
How To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

UNIX† systems allow certain programs to grant privileges to users
temporarily; these are called setuid programs. Because they explicitly vio-
late the protection scheme designed intoUNIX, they are among the most
difficult programs to write. This paper discusses how to write these pro-
grams to make using them to compromise aUNIX system as difficult as
possible.

Introduction

A typical problem in systems programming is often posed as a problem of keeping

records [1]. Suppose someone has written a program and wishes to keep a record of its

use. This file, which we shall call thehistory file, must be writable by the program (so it

can be kept up to date), but not by anyone else (so that the entries in it are accurate.)

UNIX solves this problem by providing two sets of identifications for processes. The first

set, called thereal user identification and group identification (or UID and GID, respec-

tively), indicate the real user of the process. The second set, called theeffectiveUID and

GID, indicate what rights the process has, which may be, and often are, different from the

† UNIX is a trademark of Bell Laboratories.



- 2 -

real UID and GID. The protection mask of the file which, when executed, produces the

process contains a bit which is called thesetuid bit. (There is another such bit for the

effective GID.) If that bit is not set, the effective UID of the process will be that of the

person executing the file; but if the setuid bit is set (so the program runs insetuid mode),

the effective UID will be that of the owner of the file, not that of the person executing the

file. In either case, the real UID and GID are those of the person executing the file. So if

only the owner of the history file (who is the user with the same UID as the file) can write

on it, the setuid bit of the file containing the program is turned on, and the UIDs of this

file and the history file are the same, then when someone runs the program, that process

can write into the history file.

These programs are calledsetuid programs, and exist to allow ordinary users to per-

form functions which they could not perform otherwise. Without them, manyUNIX sys-

tems would be quite unusable. An example of a setuid program performing an essential

function is a program which lists the active processes on a system with protected mem-

ory. Since memory is protected, normally only the privileged userroot could scan mem-

ory to list these processes. However, this would prevent other users from keeping track of

their jobs. As with the history file, the solution is to use a setuid program, withroot priv-

ileges, to read memory and list the active processes.

This paper discusses the security problems introduced by setuid programs, and

offers suggestions on methods of programming to reduce, or eliminate, these threats. The

reader should bear in mind that on some systems, the mere existence of a setuid program



- 3 -

introduces security holes; however, it is possible to eliminate the obvious ones.

Attacks

Before we discuss the ways to deal with the security problems, let us look at the two

main types of attacks setuid programs can cause. The first involves executing a sequence

of commands defined by the attacker (either interactively or via a script), and the second

substituting data of the attacker’s choosing for data created by a program.

In the first, an attacker takes advantage of the setuid program’s running with special

privileges to force it to execute whatever commands he wants. As an example, suppose

an attacker found a copy of the Bourne shellsh(1)† that was setuid toroot . The attacker

could then execute the shell, and − since the shell would be interactive − type whatever

commands he desired. As the shell is setuid toroot , these commands would be executed

as thoughroot had typed them. Thus, the attacker could do anything he wanted, since

root is the most highly privileged user on the system. Even if the shell were changed to

read from a command file (called ascript) rather than accept commands interactively, the

attacker could simply create his own script and run the shell using it. This is an example

of something that should be avoided, and sounds like it is easy to avoid − but it occurs

surprisingly often.

† The usual notation for referencingUNIX commands is to put the name of the command in italics, and the
first time the name appears in a document, to follow it by the section number of theUNIX Programmers’
Manual in which it appears; this number is enclosed in parentheses. There are two versions of the manu-
al referred to in this paper, one for 4.2 BSDUNIX [2], and one for System VUNIX [3]. Most commands
are in the same section in both manuals; when this is not true, the section for each manual will be given.



- 4 -

One way such an attack was performed provides a classic example of why one needs

to be careful when designing system programs. AUNIX utility calledat (1) gives one the

capability to have a command file executed at a specified time; theat program spools the

command file and a daemon executes it at the appropriate time. The daemon determined

when to execute the command file by the name under which it was spooled. However,

the daemon assumed the owner of the command file was the person who requested that

script to be executed; hence, if one could find a world-writable file owned by another in

the appropriate directory, one could run many commands with the other’s privileges.

Cases like this are the reason much of the emphasis on writing good setuid programs

involves being very sure those programs do not create world-writable files by accident.

There are other, more subtle, problems with world-writable files. Occasionally pro-

grams will use temporary files for various purposes, the function of the program depend-

ing on what is in the file. (These programs need not be setuid to anyone.) If the program

closes the temporary file at any point and then reopens it later, an attacker can replace the

temporary file with a file with other data that will cause the program to act as the attacker

desires. If the replacement file has the same owner and group as the temporary file, it can

be very difficult for the program to determine if it is being spoofed.

Setuid programs create the conditions under which the tools needed for these two

attacks can be made. That does not mean those tools will be made; with attention to

detail, programmers and system administrators can prevent an attacker from using setuid

programs to compromise the system in these ways. In order to provide some context for



- 5 -

discussion, we should look at the ways in which setuid programs interact with their envi-

ronment.

Threats from the Environment

The termenvironmentrefers to the milieu in which a process executes. Attributes

of the environment relevant to this discussion are the UID and GID of the process, the

files that the process opens, and the list of environment variables provided by the com-

mand interpreter under which the process executes. When a process creates a subprocess,

all these attributes are inherited unless specifically reset. This can lead to problems.

Be as Restrictive as Possible in Choosing the UID and GID

The basic rule of computer security is to minimize damage resulting from a break-

in. For this reason, when creating a setuid program, it should be given the least danger-

ous UID and GID possible. If, for example, game programs were setuid toroot , and

there were a way to get a shell withroot privileges from within a game, the game player

could compromise the entire computer system. It would be far safer to have a user called

gamesand run the game programs setuid to that user. Then, if there were a way to get a

shell from within a game, at worst it would be setuid togamesand only game programs

could be compromised.

Related to this is the next rule.



- 6 -

Reset Effective UIDs Before Callingexec†

Resetting the effective UID and GID before callingexec seems obvious, but it is

often overlooked. When it is, the user may find himself running a program with unex-

pected privileges. This happened once at a site which had its game programs setuid to

root ; unfortunately, some of the games allowed the user to run subshells from within the

games. Needless to say, this problem was fixed the day it was discovered!

One difficulty for many programmers is thatexec is often called within a library

subroutine such aspopen(3) or system(3) and that the programmer is either not aware of

this, or forgets that these functions do not reset the effective UIDs and GIDs before call-

ing exec. Whenever calling a routine that is designed to execute a command as though

that command were typed at the keyboard, the effective UID and GID should be reset

unless there is a specific reason not to.

Close All But Necessary File Descriptors Before Callingexec

This is another requirement that most setuid programs overlook. The problem of

failing to do this becomes especially acute when the program beingexec’ed may be a

user program rather than a system one. If, for example, the setuid program were reading

a sensitive file, and that file had descriptor number 9, then anyexeced program could also

read the sensitive file (because, as the manual page warns, ‘‘[d]escriptors open in the

† Exec is a generic term for a number of system and library calls; these are described by the manual pages
exec(2) in the System V manual andexecve(2) andexecl(3) in the 4.2 BSD manual.



- 7 -

calling process remain open in the new process ...’’)

The easiest way to prevent this is to set a flag indicating that a sensitive file is to be

closed whenever anexec occurs. The flag should be set immediately after opening the

file. Let the sensitive file’s descriptor besfd. In both System V and 4.2 BSD, the system

call

fcntl(sfd, F_SETFD, 1)

will cause the file to close acrossexecs; in both Version 7 and 4.2 BSD, the call

ioctl(sfd, FIOCLEX, NULL)

will have the same effect. (Seefcntl (2) andioctl (2) for more information.)

Be Sure a Restricted Root Really Restricts

The chroot(2) system call, which may be used only byroot , will force the process

to treat the argument directory as the root of the file system. For example, the call

chroot(‘‘/usr/riacs’’)

makes the root directory ‘‘/usr/riacs’’ so far as the process which executed the system call

is concerned. Further, the entry ‘‘..’’ in the new root directory is interpreted as naming the

root directory. Where symbolic links are available, they too are handled correctly.

However, it is possible forroot to link directories just as an ordinary user links files.

This is not done often, because it creates loops in theUNIX file system (and that creates

problems for many programs), but it does occasionally occur. These directory links can

be followed regardless of whether they remain in the subtree with the restricted root. To



- 8 -

continue the example above, if ‘‘/usr/demo’’ were linked to ‘‘/usr/riacs/demo’’, the

sequence of commands

cd /demo
cd ..

would make the current working directory be ‘‘/usr’’. Using relative path names at this

point (since an initial ‘‘/’’ is interpreted as ‘‘/usr/riacs’’), the user could access any file on

the system. Therefore, when using this call, one must be certain that no directories are

linked to any of the descendants of the new root.

Check the Environment In Which the Process Will Run

The environment to a large degree depends upon certain variables which are inher-

ited from the parent process. Among these are the variablesPATH (which controls the

order and names of directories searched by the shell for programs to be executed),IFS (a

list of characters which are treated as word separators), and the parent’sumask, which

controls the protection mode of files that the subprocess creates.

One of the more insidious threats comes from routines which rely on the shell to

execute a program. (The routines to be wary of here arepopen, system, execlp(3), and

execvp(3)†.) The danger is that the shell will not execute the program intended. As an

example, suppose a program that is setuid toroot usespopen to execute the program

printfile . As popen uses the shell to execute the command, all a user needs to do is to

† execlpandexecvpare in section 2 of the System V manual.



- 9 -

alter hisPATH environment variable so that a private directory is checked before the sys-

tem directories. Then, he writes his own program calledprintfile and puts it in that pri-

vate directory. This private copy can do anything he likes. When thepopen routine is

executed, his private copy ofprintfile will be run, withroot privileges.

On first blush, limiting the path to a known, safe path would seem to fix the prob-

lem. Alas, it does not. When the Bourne shellsh is used, there is an environment vari-

ableIFS which contains a list of characters that are to be treated as word separators. For

example, ifIFS is set to ‘‘o’’, then the shell commandshow (which prints mail messages

on the screen) will be treated as the commandsh with one argumentw (since the ‘‘o’’ is

treated as a blank.) Hence, one could force the setuid process to execute a program other

than the one intended.

Within a setuid program, all subprograms should be invoked by their full path name,

or some path known to be safe should be prefixed to the command; and theIFS variable

should be explicitly set to the empty string (which makes white space the only command

separators.)

The danger from a badly-setumaskis that a world-writable file owned by the effec-

tive UID of a setuid process may be produced. When a setuid process must write to a file

owned by the person who is running the setuid program, and that file must not be writable

by anyone else, a subtle but nonetheless dangerous situation arises. The usual implemen-

tation is for the process to create the file,chown(2) it to the real UID and real GID of the



- 10 -

process, and then write to it. However, if theumask is set to 0, and the process is inter-

rupted after the file is created but before it ischowned the process will leave a world-

writable file owned by the user who has the effective UID of the setuid process.

There are two ways to prevent this; the first is fairly simple, but requires the effec-

tive UID to be that ofroot . (The other method does not suffer from this restriction; it is

described in a later section.) Theumask(2) system call can be used to reset theumask

within the setuid process so that the file is at no time world-writable; this setting overrides

any other, previous settings. Hence, simply resetumask to the desired value (such as

022, which prevents the file from being opened for writing by anyone other than the

owner) and then open the file. (Theumaskcan be reset afterwards without affecting the

mode of the opened file.) Upon return, the process can safelychown the file to the real

UID and GID of the process. (Incidentally, onlyroot canchown a file, which is why this

method will not work for programs the effective UID of which is notroot .) Note that if

the process is interrupted between theopen(2) and thechown the resulting file will have

the same UID and GID as the process’ effective UID and GID, but the person who ran the

process will not be able to write to that file (unless, of course, his UID and GID are the

same as the process’ effective UID and GID.)

As a related problem,umaskis often set to a dangerous value by the parent process;

for example, if a daemon is started at boot time (from the file ‘‘/etc/rc’’ or

‘‘/etc/rc.local’’), its defaultumaskwill be 0. Hence, any files it creates will be created

world-writable unless the protection mask used in the system call creating the file is set



- 11 -

otherwise.

Programming Style

Although threats from the environment create a number of security holes, inappro-

priate programming style creates many more. While many of the problems in program-

ming style are fairly typical (see [4] for a discussion of programming style in general),

some are unique toUNIX and some to setuid programs.

Do Not Write Interpreted Scripts That Are Setuid

Some versions ofUNIX allow command scripts, such as shell scripts, to be made

setuid. This is done by applying the setuid bit to the command interpreter used, and then

interpreting the commands in the script. Unfortunately, giv en the power and complexity

of many command interpreters, it is often possible to force them to perform actions which

were not intended, and which allow the user to violate system security. This leaves the

owner of the setuid script open to a devastating attack. In general, such scripts should be

avoided.

As an example, suppose a site has a setuid script ofsh commands. An attacker sim-

ply executes the script in such a way that the shell which interprets the commands

appears to have been invoked by a person logging in.UNIX applies the setuid bit on the

script to the shell, and since it appears to be a login shell, it becomes interactive. At that

point, the attacker can type his own commands, regardless of what is in the script.



- 12 -

One way to avoid having a setuid script is to turn off the setuid bit on the script, and

rather than calling the script directly, use a setuid program to invoke it. This program

should take care to call the command interpreter by its full path name, and reset environ-

ment information such as file descriptors and environment variables to a known state.

However, this method should be used only as a last resort and as a temporary measure,

since with many command interpreters it is possible even under these conditions to force

them to take some undesirable action.

Do Not Usecreatfor Locking

According to its manual page, ‘‘The mode given [creat(2)] is arbitrary; it need not

allow writing. This feature has been used ... by programs to construct a simple exclusive

locking mechanism.’’ In other words, one way to make a lock file is tocreat a file with

an unwritable mode (mode 000 is the most popular for this). Then, if another user tried

to creat the same file,creat would fail, returning .

The only problem is that such a scheme does not work when at least one of the pro-

cesses hasroot ’s UID, because protection modes are ignored when the effective UID is

that ofroot . Hence,root can overwrite the existing file regardless of its protection mode.

To do locking in a setuid program, it is best to uselink (2). If a link to an already-existing

file is attempted,link fails, even if the process doing the linking is aroot process and the

file is not owned byroot .



- 13 -

With 4.2 BerkeleyUNIX, an alternative is to use theflock(3) system call, but this

has disadvantages (specifically, it creates advisory locks only, and it is not portable to

other versions ofUNIX).

The issue of covert channels [5] also arises here; that is, information can be sent

illicitly by controlling resources. However, this problem is much broader than the scope

of this paper, so we shall pass over it.

Catch All Signals

When a process created by running a setuid file dumps core, the core file has the

same UID as the real UID of the process†. By settingumasks properly, it is possible to

obtain a world-writable file owned by someone else. To prevent this, setuid programs

should catch all signals possible.

Some signals, such asSIGKILL (in System V and 4.2BSD) andSIGSTOP (in

4.2BSD), cannot be caught. Moreover, on some versions ofUNIX, such as Version 7,

there is an inherent race condition in signal handlers, When a signal is caught, the signal

trap is reset to its default value andthen the handler is called. As a result, receiving the

same signal immediately after a previous one will cause the signal to take effect regard-

less of whether it is being trapped. On such a version ofUNIX, signals cannot be safely

caught. However, if a signal is beingignored, sending the process a signal willnot cause

† On some versions ofUNIX, such as 4.2BSD, no core file is produced if the real and effective UIDs of the
process differ.



- 14 -

the default action to be reinstated; so, signals can be safely ignored.

The signalsSIGCHLD, SIGCONT, SIGTSTP, SIGTTIN, andSIGTTOU† (all of

which relate to the stopping and starting of jobs and the termination of child processes)

should be caught unless there is a specific reason not to do this, because if data is kept in

a world-writable file, or data or lock files in a world-writable directory such as ‘‘/tmp’’,

one can easily change information the process (presumably) relies upon. Note, however,

that if a system call which creates a child (such assystem, popen, or fork (2)) is used, the

SIGCHLD signal will be sent to the process when the command givensystemis fin-

ished; in this case, it would be wise to ignoreSIGCHLD.

This brings us to our next point.

Be Sure Verification Really Verifies

When writing a setuid program, it is often tempting to assume data upon which deci-

sions are based is reliable. For example, consider a spooler. One setuid process spools

jobs, and another (called thedaemon) runs them. Assuming that the spooled files were

placed there by the spooler, and hence are ‘‘safe’’, is again a recipe for disaster; theat

spooler discussed earlier is an example of this. Rather, the daemon should attempt to ver-

ify that the spooler placed the file there; for example, the spooler should log that a file

was spooled, who spooled it, when it was spooled, and any other useful information, in a

† The latter four are used by various versions of BerkeleyUNIX and their derivatives to suspend and con-
tinue jobs. They do not exist on manyUNIXes, including System V.



- 15 -

protected file, and the daemon should check the information in the log against the spooled

file’s attributes. With the problem involvingat , since the log file is protected, the daemon

would never execute a file not placed in the spool area by the spooler.

Make Only Safe Assumptions About Recovery Of Errors

If the setuid program encounters an unexpected situation that the program cannot

handle (such as running out of file descriptors), the program should not attempt to correct

for the situation. It should stop. This is the opposite of the standard programming maxim

about robustness of programs, but there is a very good reason for this rule. When a pro-

gram tries to handle an unknown or unexpected situation, very often the programmer has

made certain assumptions which do not hold up; for example, early versions of the com-

mandsu(1) made the assumption that if the password file could not be opened, some-

thing was disastrously wrong with the system and the person should be givenroot privi-

leges so that he could fix the problem. Such assumptions can pose extreme danger to the

system and its users.

When writing a setuid program, keep track of things that can go wrong − a com-

mand too long, an input line too long, data in the wrong format, a failed system call, and

so forth − and at each step ask, ‘‘if this occurred, what should be done?’’ If none of the

assumptions can be verified, or the assumptions do not cover all cases, at that point the

setuid program shouldstop. Do not attempt to recover unless recovery is guaranteed; it

is too easy to produce undesirable side-effects in the process.



- 16 -

Once again, when writing a setuid program, if you are not sure how to handle a con-

dition, exit. That way, the user cannot do any damage as a result of encountering (or cre-

ating) the condition.

For an excellent discussion of error detection and recovery underUNIX, see [6].

Be Careful With I/O Operations

When a setuid process must create and write to a file owned by the person who is

running the setuid program, either of two problems may arise. If the setuid process does

not have permission to create a file in the current working directory, the file cannot be

created. Worse, it is possible that the file may be created and left writable by anyone.

The usual implementation is for the process to create the file,chown it to the real UID

and real GID of the process, and then write to it. However, if theumask is set to 0, and

the process is interrupted after the file is created but before it ischowned, the process will

leave a world-writable file owned by the user who has the effective UID of the setuid pro-

cess.

The section on checking the environment described a method of dealing with this

situation when the program is setuid toroot . That method does not work when the pro-

gram is setuid to some other user. In that case, the way to prevent a setuid program from

creating a world-writable file owned by the effective UID of the process is far more com-

plex, but eliminates the need for anychown system calls. In this method, the process

fork (2)s, and the child resets its effective UID and GID to the real UID and GID. The



- 17 -

parent then writes the data to the child viapipe(2) rather than to the file; meanwhile, the

child creates the file and copies the data from the pipe to the file. That way, the file is

never owned by the user whose UID is the effective UID of the setuid process.

SomeUNIX systems, notably 4.2 BSD, allow a third method. The basic problem

here is that the system callsetuid(3)† can only set the effective UID to the real UID

(unless the process runs withroot privileges, in which case both the effective and real

UIDs are reset to the argument.) Once the effective UID is reset with this call, the old

effective UID can never be restored (again, unless the process runs withroot privileges.)

So it is necessary to avoid resetting any UIDs when creating the file; this leads to the cre-

ation of another process or the use ofchown. Howev er, 4.2BSD provides the capability

to reset the effective UID independently of the real UID using the system callsetreuid(2).

A similar call,setregid(2), exists for the real and effective GIDs So, all the program need

do is use these calls to exchange the effective and real UIDs, and the effective and real

GIDs. That way, the old effective UID can be easily restored, and there will not be a

problem creating a file owned by the person executing the setuid program.

Conclusion

To summarize, the rules to remember when writing a setuid program are:

• Be as restrictive as possible in choosing the UID and GID.

† This system call is in section 2 of the System V manual.



- 18 -

• Reset effective UIDs and GIDs before callingexec.

• Close all but necessary file descriptors before callingexec.

• Be sure a restricted root really restricts.

• Check the environment in which the process will run.

• Do not write interpreted scripts that are setuid.

• Do not usecreatfor locking.

• Catch all signals.

• Be sure verification really verifies.

• Make only safe assumptions about recovery of errors.

• Be careful with I/O operations.

Setuid programs are a device to allow users to acquire new privileges for a limited

amount of time. As such, they provide a means for overriding the protection scheme

designed intoUNIX. Unfortunately, giv en the way protection is handled inUNIX, it is the

best solution possible; anything else would require users to share passwords widely, or

the UNIX kernel to be rewritten to allow access lists for files and processes. For these

reasons, setuid programs need to be written to keep the protection system as potent as

possible even when they evade certain aspects of it. Thus, the designers and implemen-

tors of setuid programs should take great care when writing them.

AcknowledgementsAcknowledgementsThanks to Bob Brown, Peter Denning, George Gobel, Chris Kent,

Rich Kulawiec, Dawn Maneval, and Kirk Smith, who reviewed an earlier draft of this

paper, and made many constructive suggestions.

References

[1] Aleph-Null, ‘‘Computer Recreations,’’Software − Practise and Experience1(2) pp.
201 − 204 (April − June 1971)



- 19 -

[2] UNIX System V Release 2.0 Programmer Reference Manual, DEC Processor Version,
AT&T Technologies (April 1984)

[3] UNIX Programmer’s Manual, 4.2 Berkeley Software Distribution, Virtual VAX-11
Version, Computer Science Division, Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA (August 1983)

[4] Kernighan, Brian and Plauger, P.,The Elements of Programming Style, Second Edi-
tion, McGraw-Hill Book Company, New York, NY (1978)

[5] Lampson, Butler, ‘‘A Note on the Confinement Problem,’’CACM 16(10) pp. 613 −
615 (October 1973)

[6] Darwin, Ian and Collyer, Geoff, ‘‘Can’t Happen or /* NOTREACHED */ or Real
Programs Dump Core,’’ 1985 Winter USENIX Proceedings (January 1985)


