Use real tabs that equal 4 spaces.

Use typically trailing braces everywhere (if, else, functions,
structures, typedefs, class definitions, etc.)

if (x) {
}

The el se statenent starts on the sanme line as the | ast closing brace.
i (x) {
} else {
}
Pad parent hesi zed expressions with spaces

if (x) {
}

| nst ead of

if (x) {
}

And

X =((y* 0.5);
I nst ead of

x = (y * 0.5f);

Use precision specification for floating point values unless there is
an explicit need for a double.

float f = 0.5f;
| nst ead of

float f = 0.5;

And
float f = 1.0f;
| nst ead of

float f = 1.f;

Function nanes start with an upper case:

voi d Function(void);

In multi-word function names each word starts with an upper case:

voi d Thi sFuncti onDoesSonet hi ng(void);

The standard header for functions is:

Functi onNane

Descri ption

Vari abl e nanes start with a | ower case character.

float x;

In multi-word variable nanmes the first word starts with a | ower case
character and each successive word starts with an upper case.

fl oat maxDi st anceFronPl ane;

Typedef nanes use the sanme nam ng convention as vari abl es, however
they always end with " _t".

typedef int fileHandl e t;

Struct nanes use the sane nam ng convention as vari abl es, however
they always end with " t".

struct renderEntity_t;

Enum nanes use the sanme nam ng convention as vari abl es, however they
always end with " _t". The enum constants use all upper case
characters. Miltiple words are separated with an underscore.

enum contact _t {
CONTACT _NONE,
CONTACT _EDGE,
CONTACT _MODELVERTEX,
CONTACT_TRWERTEX

b

Nanmes of recursive functions end with " _r"

void Wal kBSP_r(int node);

Defi ned nanes use all upper case characters. Miultiple words are
separated with an underscore.

#defi ne SI DE_FRONT 0

Use ‘const’ as nuch as possible.

Use:

const int *p; /'l pointer to const int

int * const p; /'l const pointer to int

const int * const p; /'l const pointer to const int
Don’t use:

I nt const *p;

CLASSES

The standard header for a class is:

Class nanes start with "id" and each successive word starts with an
upper case.

cl ass i dVec3;

Cl ass vari abl es have the sane nam ng convention as vari abl es.

cl ass idVec3 {

fl oat X;
fl oat Y,
fl oat Z;

Cl ass net hods have the sane nam ng convention as functions.
cl ass idVec3 {

fl oat Length(void) const;
}

| ndent the nanes of class variabl es and cl ass nethods to make nice
colums. The variable type or nethod return type is in the first
colum and the variable nane or nethod nane is in the second col um.

cl ass idVec3 {

f | oat X;
fl oat Y;
fl oat z;
fl oat Length(void) const;

const float * ToFloatPtr(void) const;

}

The * of the pointer is in the first columm because it inproves
readabil ity when considered part of the type.

O ding of class variables and nethods should be as foll ows:

list of friend classes
public vari abl es
publ i ¢ net hods
protected vari abl es
prot ect ed nmet hods
private vari abl es
private met hods

NoohkwnhRE

This allows the public interface to be easily found at the begi nning
of the class.

Al ways make cl ass methods ‘const’ when they do not nodify any cl ass
vari abl es.

Avoi d use of ‘const _cast’. When object is needed to be nodified, but
only const versions are accessible, create a function that clearly
gives an editable version of the object. This keeps the control of
the *const-ness’ in the hands of the object and not the user.

Return ‘const’ objects unless the general usage of the object is to
change its state. For exanple, nedia objects |like idDecls should be
const to a mpjority of the code, while idEntity objects tend to have
their state nodified by a variety of systens, and so are ok to | eave
non- const.

Functi on overl oadi ng shoul d be avoided in nbost cases. For exanple,
I nst ead of:

const idAnim* GetAninm(int index) const;
const idAnim* Get Ani m{ const char *nane) const;
const idAnim* GetAninm(float randonDi versity) const;
Use:
const idAnim* GCet Ani nByl ndex(int index) const;
const i dAnim* Cet Ani nByNanme(const char *nanme) const;
const i dAnim* Get RandomAni n{ float randonDi versity) const;

Explicitly nanmed functions tend to be | ess prone to programrer error
and i nadvertent calls to functions due to wong data types being
passed in as argunents. Exanple:

Anim= GetAninm(0);

This could be neant as a call to get a random ani nati on, but the
conpiler would interpret it as a call to get one by index.

Overl oading functions for the sake of adding ‘const’ accessible
function is allowabl e:

class idAnimatedEntity : public idEntity {
i dAni mat or * Get Ani mator(void);
const idAnimator * GetAnimator(void) const;

b

In this case, a const version of GetAninator was provided in order to
all ow Get Animator to be called fromconst functions. Since

I dAni matedEntity is normally a non-const object, this is allowable.
For a nedia type, which is normally const, operator overl oadi ng
shoul d be avoi ded:

class idDecl MD5 : public idDecl {
const i dMD5ANIi m * Get Ani m(ani nHandl e_t handl e) const;
i dVD5ANi m * Get Edi t abl eAni m{ ani nHandl e_t handl e);

}s
id Studi o Nanes

I d<name>Dl g /1 dialog class

I d<name>Ctr | /'l dialog control class
i d<name>Frm /1 frame w ndow

I d<nanme>Vi ew /'l view w ndow

I d<nane> /'l any other class

FI LE NAMES

Each cl ass should be in a seperate source file unless it nakes sense
to group several smaller classes.

The file name should be the sane as the nanme of the class wthout the
"id" prefix. (Upper/lower case is preserved.)

cl ass i dW ndi ng;

files:

W ndi ng. cpp

W ndi ng. h

When a class spans across nultiple files these files have a nane that
starts with the nane of the class without "id", followed by an
underscore and a subsection nane.

cl ass i dRender Worl d;

files:

Render Wor | d_| oad. cpp
Render Wor | d_deno. cpp
RenderWor | d_portal s. cpp

When a class is a public virtual interface to a subsystemthe public
interface is inplenented in a header file with the nane of the cl ass
wi thout "id". The definition of the class that inplenents the
subsystemis placed in a header file with the nane of the cl ass

wi thout "id" and ends with " _|ocal.h". The inplenentation of the
subsystemis placed in a cpp file wwth the nane of the class w thout
"id".

cl ass i dRender Wor | d;
RenderWorl d. h /1 public virtual idRenderWorld interface

RenderWor | d_I ocal . h /1 definition of class i dRenderWrl dLoca
Render Wor | d. cpp /'l inmplenmentation of idRenderWrl dLoca

