
Security holes... Who cares?

Eric Rescorla
RTFM, Inc.

ekr@rtfm.com

Abstract
We report on an observational study of user response
following the OpenSSL remote buffer overflows of July
2002 and the worm that exploited it in September 2002.
Immediately after the publication of the bug and its
subsequent fix we identified a set of vulnerable servers.
In the weeks that followed we regularly probed each
server to determine whether it had applied one of the
relevant fixes. We report two primary results. First, we
find that administrators are generally very slow to apply
the fixes. Two weeks after the bug announcement, more
than two thirds of servers were still vulnerable. Second,
we identify several weak predictors of user response
and find that the pattern differs in the period following
the release of the bug and that following the release of
the worm.

1 Introduction
It’s widely believed that users are not particularly dili-
gent about installing security fixes to their software. For
instance, Netcraft [1] reports that 75% of users of SSL-
ized versions of Apache had failed to upgrade their
servers months after the Apache chunked encoding vul-
nerability [2] was announced. 1 Despite this belief, an
enormous amount of effort has been put into the discov-
ery, repair, and disclosure of security flaws in software.
The implied rationale for all this work is that users who
are informed about the security flaws of their software
can upgrade as appropriate.

In this paper, we describe the results of direct mea-
surement of deployment of fixes for the popular Open
Source SSL/TLS toolkit OpenSSL, as installed in the
mod_SSL package for the Apache Web server. For a
number of reasons we would expect mod_SSL users to
be better than average about installing security fixes:

• OpenSSL is security software and therefore its
users clearly desire security.

• OpenSSL users are overwhelming UNIX users and
UNIX users are widely believed to be more experi-
enced in server administration than Windows users.

• Many popular operating systems (Linux, *BSD)
have packages to make installing OpenSSL easier.

1. Note that 25% of servers upgraded is a lower bound on
fix deployment since a variety of countermeasures and
patches for the Apache flaws were available.

• We are studying the deployment of OpenSSL in
servers which areparticularly vulnerable because
they must be open to the Internet at all times.

• The flaw allowed an attacker to take over the entire
Web server.

In spite of all these factors, our measurements show
remarkably slow deployment. One week after the flaw
was announced, only 23% of the servers under study
had been fixed. Two weeks after, less than 1/3 had been
fixed. At the time of release of the Slapper worm that
exploited this vulnerability [3], almost 60% of servers
were still vulnerable. Figure 1 shows the percentage of
vulnerable servers for the period under study.

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

vulnerable %

days

Slapper released

Figure 1 Vulnerable servers over time

2 Disclosure of the Vulnerabilities
On the morning of July 30, 2002, Ben Laurie, a mem-
ber of the OpenSSL core team, sent an advisory entitled
"OpenSSL Security Alert - Remote Buffer Over-
flows"[4] to a number of Internet mailing lists, includ-
ing openssl-users and bugtraq. This announcement
described the following flaws in OpenSSL:

1. The SSLv2 CLIENT-MASTER-KEY message was
being improperly processed by servers. An overly-
long message could be used to overrun a buffer on
the heap. This bug was known to be exploitable.

2. An overlong SSLv3 SessionID value supplied by
the server could be used to overrun a buffer on the
client.

3. An overlong SSLv3 master key supplied to a server
could cause overflow. This bug applied only to beta
versions of OpenSSL 0.9.7.

4. Various buffers for ASCII representations of inte-
gers were too small on 64 bit platforms.

5. The ASN.1 parser could be confused by supplying
it with certain invalid encodings.

The most important of these bugs were (1) and (2). Bug
(1) would allow compromise of any OpenSSL server
running SSLv2 (nearly all do) and bug (2) would allow
compromise of any OpenSSL client running SSLv3
(nearly all do). The server bug was particularly serious
because any attacker could connect directly to a vulner-
able server and compromise it, whereas the client bug
could only be exploited if the client would be induced
to connect to the attacker’s server. This is more difficult
but by no means impossible. Since the server vulnera-
bilities were more serious and easier to measure we will
be discussing them for the rest of the paper.

2.1 Dissemination

The wide popularity of OpenSSL led to extensive pub-
licity almost immediately. The bug was widely reported
in the press and within a day or two, operating system
and application vendors began announcing versions of
the advisory customized for their platform, along with
instructions for upgrading. Figure 2 shows a timeline of
major announcements.

July 30, 2002 10:08 GMT Initial announcement

July 30, 2002 10:15 GMT Patches for other versions released

July 30, 2002 11:08 GMT OpenSSL 0.9.6e available for FTP

July 30, 2002 12:47 GMT Debian announces[5]

July 30, 2002 13:00-12:00 GMT Trustix, Engarde, Gentoo[6, 7, 8]

July 30, 2002 13:59 GMT Vulnerability posted to Slashdot [9]

July 31, 2002 17:43 GMT FreeBSD announces [10]

August 2, 2002 15:17 GMT Apple announces[11]

August 2, 2002 17:33 GMT NetBSD announces[12]

August 9, 2002 11:54 GMT OpenSSL 0.9.6g released

Figure 2 Timeline of disclosure events

2.2 Scope of the Bug

At the time of the advisory there was a lot of confusion
about which software was affected. Essentially, this
confusion came in two forms:

1. Confusion about which SSL-using software was
affected.

2. Confusion about which OpenSSL-using software
was affected.

The first form of confusion stemmed from the fact that
the flaws could be exploited by sending bogus SSL pro-
tocol messages and therefore the flaws were associated
with SSL. No doubt the confusion was amplified by the
discovery of problems with Internet Explorer’s Basic
Constraints processing [13] which was also associated
in people’s minds with SSL and all implementations
thereof.

Although OpenSSL is the dominant free SSL
implementation, many widely used SSL-using packages
do not use OpenSSL. In particular, Internet Explorer,
Internet Information Server, and Mozilla do not use
OpenSSL and are therefore not vulnerable to this
attack. (Despite being Open Source, Mozilla uses
Netscape’s home grown Netscape Security Services
library rather than OpenSSL)

The second form of confusion resulted from the
widespread use of OpenSSL as the cryptographic
library for a wide variety of other applications. Since
the flaws were primarily in the SSL protocol implemen-
tation, these applications were not affected. However,
this fact was not widely understood and many vendors
recommended upgrading not only OpenSSL but any
application which depended on it. For instance, the
OpenPKG advisory [14] recommended reinstalling
OpenSSH, scanssh, and tcpdump, which used
OpenSSL’s cryptographic functions but not its SSL
implementation or ASN.1 routines. It seems likely that
some users who would otherwise have upgrade did not
because they believed it to be a much larger job than it
in fact was.

2.3 Round Two

The security changes made to OpenSSL included a
number of assertions designed to check for various ille-
gal protocol conditions. These conditions were not
known to be exploitable but checking for them was
clearly an improvement. Unfortunately, the assertions
were structured explicitly as assertions and failure
caused the program to exit. This made it rather easy to
mount a DoS attack on an SSL server by feeding it
invalid data and thus causing a crash.

In order to fix this bug, the OpenSSL team released
OpenSSL 0.9.6f on August 8, which replaced the asser-
tions with errors. Due to inadequate preparation time,
there were a number of build problems with 0.9.6f and
the team was forced to issue 0.9.6g to solve those prob-
lems. As of this writing, 0.9.6g was the latest stable ver-
sion. The OpenSSL team did not issue patches for these
problems but a number of operating system vendors
did.

2.4 The Slapper Worm

On September 13th at 13:55 GMT, Fernando Nunes
announced [3] that a worm had compromised his
machine via the SSLv2 hole described here. The exis-
tence of this worm was independently verified and it
was soon dubbed Slapper. The details [15] of the Slap-
per worm aren’t important to understand, so we will
simply summarize the important points.

Vulnerable Systems

Slapper randomly chooses IP addresses and then probes
them in an attempt to determine the server version.
When it finds a vulnerable server, it uses the SSLv2
buffer overflow to install itself on the target. Since each
version of Apache requires a slightly different exploit,
Slapper contains a table of version/memory offset pairs.
If the version is not in the table, Slapper attempts to
attack it anyway, using a default version guess, but this
likely just creates a crash rather than a compromise,
unless the guess happens to be correct. As of this writ-
ing, Slapper only attacks Linux machines, but it could
be easily adapted for other platforms.

Worm Behavior

Once Slapper has compromised a target machine, it
then does two things. First, it joins a peer-to-peer net-
work of other worm instances. This allows the worm to
be remotely controlled. The worm can then be used to
DoS attack other systems or damage the compromised
machine. In addition, the worm then looks for other
machines to infect.

3 Countermeasures

As usual, the advisories admonished users to apply
fixes as soon as possible. Users had four choices:

1. Turn off OpenSSL entirely.

2. Disable SSLv2 (server-only).

3. Upgrade to a newer fixed version.

4. Install one of the patches (supplied with the advi-
sory).

Turning off SSL support isn’t a realistic option for most
sites but it’s worth considering the other three options.

3.1 Disabling SSLv2

Turning off SSLv2 is by far the simplest possible coun-
termeasure, which is effective on all 32-bit platforms. In

both mod_SSL and ApacheSSL, a simple configuration
directive will turn off all support for SSLv2. All the
administrator needs to do is edit the configuration file
and restart the server. Although administrators are
sometimes concerned about being unable to serve
SSLv2-only clients, SSLv3-capable clients have been
available since 1996 and SSLv2-only clients are
extremely rare. Therefore, the negative side effects of
this countermeasure are quite minimal. 2

3.2 Upgrading

The OpenSSL project currently maintains two source
branches, the stable 0.9.6 branch and the beta-level
0.9.7 branch. Concurrent with the security alert, the
OpenSSL team released versions 0.9.6e and
0.9.7-beta3. In both cases the releases were both source
and binary-compatible with the previous releases in that
branch, though not necessarily with other branches.

OpenSSL is extremely portable and so a source-
level upgrade is quite easy. Assuming that the new ver-
sion is compatible with the current version, the user
merely needs to do:

./config
make
make install

In most cases, applications are dynamically linked
against OpenSSL and so simply reinstalling OpenSSL
is sufficient. Obviously, in the few cases where applica-
tions are statically linked they must be recompiled.

3.3 Patches

The OpenSSL project provided patches for all major
versions of OpenSSL. We hav e test-applied them and
they seem to work fine. In many cases, Operating Sys-
tem vendors also supplied patches for the versions they
had shipped with their system.

3.4 Operating System Vendor Behavior

One of the primary channels for deployment of
OpenSSL is via Operating System vendors. NetBSD,
FreeBSD, and OpenBSD all provide OpenSSL as part

2. SSLv2-only servers have taken quite a long time to
disappear, since a number of Netscape Enterprise server
versions were SSLv2-only. This fact may explain the
widespread concern over SSLV2-only clients.

of their base system. All the major Linux vendors pro-
vide packages (RPMs or .debs) for some version of
OpenSSL. As a consequence, many users have nev er
had the experience of building OpenSSL from source
and expect to get their updates from their Operating
System vendor. Figure 3 shows the updates provided by
the major Open Source vendors.

Vendor Update Type Binary

Debian Patch (deb) Yes

Engarde Patch (RPM) Yes

OpenPKG Patch (RPM) No

SuSE Patch (RPM) Yes

Red Hat Patch (RPM) Yes

Mandrake Patch (RPM) Yes

Connectiva Patch (deb) Yes

Caldera Upgrade (RPM) Yes

OpenBSD Patch CVS No

NetBSD Both (CVS) No

FreeBSD Patch (CVS) No

Figure 3 Updates provided by various vendors

As noted above, all the major Open Source vendors
were extremely proactive about delivering updates. In
ev ery case, updates were available within 2 days of the
initial advisory. As should be apparent from Figure 4,
updating on Linux was rather easier than updating on
*BSD, since all of the *BSD updates required compila-
tion, either of the base system or from the ports/pack-
ages collection.

4 Methodology

Our method is conceptually simple. We first assembled
a list of SSL-capable servers and then periodically
probed each server to determine whether or not it had
deployed the fix, as well as what kind of fix (disabling
SSLv2, patch, or upgrade) had been deployed.

4.1 Assembling the Corpus

It was first necessary to obtain a large list of SSL-capa-
ble servers. Although a number of different types of
servers run SSL, we restricted ourselves to HTTPS
(Web) servers because they are by far the most common
and the easiest to find In addition, using only HTTPS
servers allows us to have a more homogeneous sample
and thus to draw tighter conclusions, at least for this
limited domain.

Following the method of Murray [16] we built our
list using a search engine. We randomly selected a list
of 10,000 words from FreeBSD’s
/usr/share/dict/words file and then queried

Google for each word using a search for "https and
<word>" with the limit of hits per page set to 100. We
then processed each page to find all the URLs on the
page beginning with "https://" and built a list of all
hosts which were potential SSL servers. We then con-
tacted each server on this list and selected those which
responded to an SSL query (with a 5 minute timeout)
and which advertised that they used OpenSSL (thus
limiting the sample size to mod_SSL and its derivatives
since ApacheSSL does not advertise OpenSSL version).
After suppressing duplicate IPs and servers whose
administrators complained about being probed 3 the
final sample size was 890 hosts. To ensure that we use
the same server every time we sample by IP address,
not DNS name.

4.2 Probing

Our task is to determine which of actions any giv en
administrator has taken. To do this, we need three
pieces of information:

1. What version number does the server advertise?

2. Does the server support SSLv2

3. Is the server vulnerable?

Given these pieces of information the decision proce-
dure, shown in Figure 4, is relatively straightforward.

Advertises
New Version

Supports
SSLv2

Vulnerable

Nothing

No

Yes

Yes

Yes
Upgraded

No Disabled
SSLv2

No
Patched

Figure 4 Determining what the administrator has done

3. n=2

Adver tised Version

mod_SSL and its derivatives advertise the OpenSSL
version in the HTTP Server: header line. It is there-
fore quite easy to determine what version of mod_SSL
has been linked to the server. Thus, we can simply con-
nect to the HTTPS server and issue a HEAD request.
The server responds with an HTTP header containing
the Server: field and hence the answer we desire:

Server: Apache/1.3.26 (Unix) mod_ssl/2.8.10 OpenSSL/0.9.6

SSLv2 Support

Determining whether the server supports SSLv2 is
equally easy. We simply configure our client to offer
only SSLv2 and then attempt to handshake with the
server. A success means that the server supports SSLv2.
A failure means it does not.

Detecting Vulnerable Servers

The patches provided by the OpenSSL project do not
change the version number. As a consequence, we can-
not simply examine at the advertised version number in
order to determine whether or not they hav e been
applied. However, due to the nature of the SSLv2 prob-
lem, it’s still relatively straightforward to determine
whether or not a server is vulnerable and therefore by
excluding servers which advertise a newer version num-
ber identify whether or not a given server has been
patched. 4

The message used to exploit the OpenSSL SSLv2
problem is the CLIENT-MASTER-KEY message, which
has the syntax:

char MSG-CLIENT-MASTER-KEY
char CIPHER-KIND[3]
char CLEAR-KEY-LENGTH-MSB
char CLEAR-KEY-LENGTH-LSB
char ENCRYPTED-KEY-LENGTH-MSB
char ENCRYPTED-KEY-LENGTH-LSB
char KEY-ARG-LENGTH-MSB
char KEY-ARG-LENGTH-LSB
char CLEAR-KEY-DATA[MSB<<8|LSB]
char ENCRYPTED-KEY-DATA[MSB<<8|LSB]
char KEY-ARG-DATA[MSB<<8|LSB]

4. A similar technique was described by Weimer [17]
while this paper was in production. Weimer appears to
have dev eloped his technique based on analysis of the
Slapper worm.

The first two fields are fixed length simply a message
type followed by the cipher suite that the client has cho-
sen. The rest of the message consists of the clear key
(used in export mode), the encrypted key, which is sim-
ply a random value encrypted in the server’s public key,
and the key arg, which is used as the block cipher IV. In
the CLIENT-MASTER-KEY message, the lengths of each
field is specified first, followed by the concatenated val-
ues of all three fields. Thus, the last bytes of the mes-
sage are the value of the key-arg field.

The source of the problem is that the key arg is a
fixed-length buffer in the OpenSSL session struc-
ture. All of the block ciphers specified in SSLv2 have
64-bit block sizes and therefore the maximum size of
the key arg is 8 bytes. When the CLIENT-MASTER-KEY
message is read in by the function
get_client_master_key(), this length is never
checked and therefore an over-long key arg can overrun
the buffer and cause a heap overflow. Since OpenSSL
uses function pointers extensively, a heap overflow is
easy to exploit. The fix for the problem is simply to
check the length value of the key arg prior to copying it
into the buffer, as shown in the code in Figure 5.

n2s(p,i); s->session->key_arg_length=i;

if(s->session->key_arg_length > SSL_MAX_KEY_ARG_LENGTH)

{

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,

SSL_R_KEY_ARG_TOO_LONG);

return -1;

}

Figure 5 Length check in OpenSSL 0.9.6e

It’s possible to determine whether OpenSSL has
been patched by generating a CLIENT-MASTER-KEY
which is one octet too long. It’s easy to see that in a
patched version, this falls afoul of the length check
shown in Figure 5. The result is a handshake error.

In an unpatched version of OpenSSL, the server
overruns the key_arg with whatever the extra byte is.
However, as we shall now show, this overrun is harm-
less.

Once the overrun has occurred there are now two
pieces of incorrect data:

1. The next field in the session structure is now
damaged.

2. The key_arg_length is 9 instead of 8

Fortuitously, both of these changes are harmless.
Assuming normal structure ordering the next field in the
session structure is the master_key_length
(with sparse field layout the overrun may damage
empty data). This field is set at the end of

get_client_master_key() and is not used else-
where in the function and so the damage goes unno-
ticed.

The key_arg_length field is never used else-
where in OpenSSL. As each encryption algorithm
knows its own block size, the key_arg buffer is
passed directly into the encryption routines as an IV
without a length attached. As a result, all the keying
material remains the same and the handshake completes
successfully. It’s therefore easy to detect an unpatched
OpenSSL server by simply using an overlong key arg
and checking to see if the handshake completes.

4.3 Differentiating Fixed Versions

Although the OpenSSL team did not distribute patches
for the DoS vulnerabilities, a number of vendors appear
to have done so. If the fixes introduced with 0.9.6g had
been restricted to fixing the DoS vulnerability, it would
not have been possible to probe for these updates with-
out damaging the servers in question. However, the
updates also slightly modified the behavior of the server
to the vulnerability probe described in Section 4.2. Fig-
ure 6 shows the overlong key-arg test found in 0.9.6g.

n2s(p,i); s->session->key_arg_length=i;

if(s->session->key_arg_length > SSL_MAX_KEY_ARG_LENGTH)

{

ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_KEY_ARG_TOO_LONG);

return -1;

}

Figure 6 New key arg length check

Note the call to ssl2_return_error(). This gen-
erates an SSLv2 error message on the wire, whereas the
previous check merely closed the connection. It is
therefore possible to detect the newest round of fixes by
the presence of this message.

4.4 Sampling Procedure

The primary work of sampling is done by two pro-
grams, id-client and hstest. id-client
attempts the HEAD request described in Section 4.2 and
hstest simply attempts a handshake and records
whether it succeeds or fails. For historical reasons, both
version detection and SSLv2 testing are done with id-
client and patch detection is done with hstest .
SSLv2 testing could be done just as well with hstest.

We sample four times daily at 6 hour intervals. We
test version advertisement and SSLv2 support four
times a day, at 6:00 AM, noon, 6:00 PM, and midnight
Pacific. Because the patch detection creates a noticeable
signature on the target server, which often annoys
administrators, we test only twice a day, at 6:00 AM
and 6:00 PM. In a number of cases we’ve encountered
network or other problems during testing, in which case
we’ve collected data as soon as possible thereafter. The
hourly variance in performance is small enough that we
believe this does not seriously affect the data.

5 Results
This section describes the data collected during the four
weeks following the original announcement.

5.1 Baseline
In our first complete sample, taken at July 30, 16:43
GMT, our sample showed evidence of the deployment
of 14 separate versions of OpenSSL. The vast majority
of these versions were from the stable 0.9.6 branch.
Figure 7 shows the distribution.

0.9.1c
0.9.2b
0.9.3a
0.9.4
0.9.5
0.9.5a
0.9.6
0.9.6a
0.9.6b
0.9.6c
0.9.6d

0.9.7-beta1
0.9.7-beta2

Figure 7 Version distribution at bug discovery

Note that version 0.9.6d was not the most popular ver-
sion at bug discovery time.

5.2 Propagation of Fixes

The first question we want to ask is: how fast do admin-
istrators act to close security holes? Since we directly
measure the vulnerability of a given server, this ques-
tion is easy to answer, as shown in Figure 8. Figure 8
shows the percentage of servers in our sample each day
that were vulnerable.

60
65
70
75
80
85
90
95

100

0 5 10 15 20 25 30

vulnerable %

time (days)

V = A*exp(-B*t) + C
A = 36
B = .11
C = 60C = 60

rˆ2 = .96

Figure 8 Vulnerable servers as a function of time

The obvious model for this data is an exponential decay
curve. We hav e fitted this data to
vulnerable = Ae−Bt + C, producing the curve shown in
Figure 8. Installation of security fixes is heavily front-
loaded. A very large number of people upgraded imme-
diately, with 16% of the sample population installed
fixes within the first day and 20% within the first week.
However, after that time, deployment rapidly falls off
with the deployment curve going almost totally flat
after two weeks.

As shown in Figure 8, roughly, 2/3 of the users
who were going to install fixes had done so within two
weeks. This suggests that the population is strongly
bimodal, with roughly 35% of the population closely
monitoring security updates and upgrading immediately
and the remaining 60% taking no action of any kind.

Note that Figure 8 shows three big jumps, on days
0-1, days 6-7, and days 12-13. The first jump is a gen-
uine mass upgrade event but the second two jumps are
artifacts, reflecting deployment by two large hosting
providers, SecureSites on August 7/8 and Verio on
August 12/13.

Figure 8 slightly overestimates the number of
patches that were applied, since only servers which
answered and were vulnerable were counted. However,
this effect is slight—during the measurement period no
more than 35 servers were unavailable at any giv en
time.

5.3 Day-by-day results

It’s natural to wonder whether administrators are more
likely to upgrade on one day than another. In order to
explore this, we first need to control for the overall
upgrading trendline, which is an exponential. In order
to do so, we take the daily rate of change in vulnerable
hosts as a percentage of the number of vulnerable hosts.
So, for instance, if we have two samples (time0,hosts0)

and (time1,hosts1), the normalized rate of change over
that period is given by:

d
hosts

dt
=

hosts1 − hosts0

(time1 − time1) ⋅ hosts0

Because our samples are over 24 periods, we now hav e
the normalized daily rate of change. Samples are taken
at 6:00 AM Pacific and so we arbitrarily assign the rate
of change between day X and day X + 1 to day X . This
produces some distortion because the assigned days do
not exactly match days in North America, but of course
this would be true of any dividing line we chose. Real-
istically, not much happens in North America before
9:00 AM Eastern so this dividing line produces a rela-
tively accurate picture of what happens each day. Alter-
nately, one can think of days as being measured in a
time zone somewhere in the middle of the Pacific. The
result is shown in Figure 9 as a scatter plot. Since the
results span many weeks there are a large number of
points corresponding to each day of the week. The hori-
zontal line shows the average rate of change for each
day.

-0.01
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07

S M T W R F S

rate of change

day of week

Figure 9 Daily rates of change

As Figure 9 shows, qualitatively more upgrading hap-
pens during the North American workweek than on the
weekends. There is probably some effect here from the
release time of the advisories (Tuesday morning and
Friday morning), because we would expect the first day
or two afterwards to be especially active. Howev er, the
general trend of all the data points is higher during the
week than on the weekend. Note that this is a qualita-
tive result only.

With the exception of the two mass upgrades men-
tioned in Section 5.2, there does not appear to be any
significant difference in the amount of upgrading that
happens during the North American daytime and the
North American evening. However, it’s possible that
our measurements are not sensitive enough to distin-
guish evening from morning due to the sampling fre-
quency and times.

5.4 Who upgrades?

Finally, let’s consider the question of which class of
users choose to deploy fixes. This question is not of
completely academic interest. It would be convenient
for vendors (if not altogether to the public good) if
some readily identifiable group of users deployed and
the rest did not, since they could then either ignore or
cater to specific segments. (This information would be
useful to attackers as well, one supposes.)

In this section, we consider a number of potential
predictors of administrator response. In general, we
might expect that a server which is actively maintained
would be more likely to be updated in response to secu-
rity problems. We therefore consider a number of mea-
sures of how actively maintained the server is, including
whether software versions were up to date, whether it is
hosted by a hosted service provider (HSP)—which pre-
sumably maintains it more actively—and a number of
metrics of how "live" the web site is. We also wanted to
assess the effect of TLD (reported to be relevant by
[18].)

0.9.1c
0.9.2b
0.9.3a
0.9.4
0.9.5
0.9.5a
0.9.6
0.9.6a
0.9.6b
0.9.5c
0.9.6d

Figure 10 Fix deployment by original version

Version Effects

The intuitively obvious predictor of whether users will
apply fixes is whether they already are up to date. Fig-
ure 10 shows the percentage of servers initially running
each version who applied fixes to their servers by the
end of the initial 28-day window. With the exception of
servers initially running version 0.9.5, we see a rela-
tively consistent pattern: servers which were initially
are fixed at the highest rate (70%). Servers which are
running other 0.9.6 versions are fixed at a rate of about
30-40%. Less than 10% of servers 0.9.5 and 0.9.4 vari-
ants were fixed, and no servers running versions < 0.9.4
were fixed. The overrepresentation of running 0.9.5 is a
sampling artifact— WHOIS lookups on the relevant IPs
show all the servers to be operated by Cybergate, so
their results are not independent.

Analysis bears out this qualitative assessment. Fig-
ure 11 shows the results of a logistic regression [19, 20]
predicting the occurrence of upgrading. The explana-
tory variables are the initial versions of OpenSSL and
Apache, with the Apache version being a dichotomous
variable of either up to date (post the chunked buffer
overflow) or old. The regression was performed with R
[21] using the Design [22] library.

Coefficient Meaning

OpenSSL 0.9.6x (x<d)χ1

OpenSSL 0.9.6dχ2

Apache Currentχ3

OpenSSL 0.9.6x (x<d) * Apache Currentχ4

OpenSSL 0.9.6d * Apache Currentχ5

Variable Coeffi-

cient

Standard

Error

Z P value Odds

Ratio

95% CI

-1.52 0.217 -7.03 - - -Intercept

0.335 0.261 1.29 0.199 1.40 0.839-2.33χ1

1.52 0.740 2.06 0.040 4.58 1.07-19.5χ2

-0.782 0.567 -1.38 0.168 0.458 0.151-1.39χ3

1.82 0.602 3.02 0.003 6.14 1.89-20.0χ4

1.54 0.925 1.67 0.096 4.67 0.762-28.6χ5

Figure 11 Logistic regression model for updating behavior

As expected, we see that initial version is a significant
predictor of updating behavior. Servers which were run-
ning 0.9.6d when the bug was released were more likely
(odds ratio=4.58; P=0.04; 95% CI= 1.07-19.5), regard-
less of what Apache version they were running. How-
ev er, the Apache version is a significant effect modifier
when the initial OpenSSL version is 0.9.6x (x<d), even
though Apache version by itself is not significant. We
interpret this result as follows: The latest Apache ver-
sions contain fixes for a remotely exploitable hole for
which exploits [2] were circulating. Thus, Apache ver-
sion is a discriminator between people who just happen
to be up to date and people who are consciously
remaining up to date on security fixes (in this case for
Apache)

Hosting Services

Unfortunately, the results obtained in the previous sec-
tion are not entirely adequate. The problem is that the
samples are not truly independent, since a fair number
of the sites in question are operated by large hosting
service providers. In general, we would expect all the
machines operated by a given provider or administrator
to be upgraded simultaneously, reg ardless of what soft-
ware versions they were running. Discovering the oper-
ator of any giv en server would require contacting each
administrator and asking relatively detailed questions.
We considered this prohibitive.

Instead, we used WHOIS [23] net blocks as a
proxy. We first interrogated the ARIN database. In
cases where ARIN reported that the net block was
administered by a different registry such as APNIC or
RIPE we then interrogated that registry’s database. We
considered that any servers which belonged to the same
net block were operated by the same provider.

This assignment is necessarily somewhat rough.
First, some providers do not report net blocks which are
assigned to customers as delegated. The result will be
that some hosts which are actually operated by different
administrators will appear to be operated by the same
provider. Second, some large ISPs (e.g. Verio) own
multiple net blocks with different names, perhaps due to
acquisitions. We made no attempt to determine whether
the machines in these blocks were separately adminis-
tered. Finally, some providers provide both managed
and unmanaged service, in which case some machines
in a managed facility may actually be operated by a
customer.

Nevertheless, there is quite a noticeable effect of
HSP size on updating behavior. Figure 12 shows the
vulnerability percentage for some somewhat arbitrarily
chosen intervals of HSP sizes.

HSP Size (Hosts) % Vulnerable # Hosts

1-4 0.71 673

5-15 0.50 46

15-30 0.33 69

30-100 (Verio) 0.15 69

Note: only hosts for which data was available at day 27 are listed here.

Figure 12 Upgrading by HSP size

We attempted to directly account for the effect of HSP
size via logistic regression but were not able to achieve
good fits. Reduced models did not have satisfactory fit
statistics and the saturated model produces absurd coef-
ficients due to a number of empty cells. These problems
suggest that HSPs behave enough differently from ordi-
nary administrators that it’s worth treating them sepa-
rately. Accordingly, we performed a new analysis with
only the "independent" hosts—those with HSPSIZE = 1
(n=518). This yields an excellent fit, as shown in Figure
13

With the effect of HSPs removed, we now see that
all three predictors are significant. In other words, hav-
ing up to date or even modestly recent version of
OpenSSL and Apache was a significant predictor that
the server will be updated to fix this bug. Note that we
do not show interaction terms between OpenSSL and
Apache versions in this fit. Likelihood Ratio testing
indicated that those terms did not significantly improve
the quality of the fit. The results shown in Figure 13 are
quite robust with regard to our classification of whether

the server is operated by an HSP. We achieved good fits
(P=.74) even when the breakpoint was set as high as 15
servers in a net block.

Variable Coeffi-

cient

Standard

Error

Z P value Odds

Ratio

95% CI

-2.40 0.325 -7.38 - - -Intercept

1.04 0.350 2.96 0.003 2.82 1.42-5.60χ1

1.49 0.445 3.35 0.001 4.44 1.86-10.6χ2

0.873 0.244 3.57 0.000 2.39 1.48-3.86χ3

Hosmer-le Cessie Test: P=.56

Figure 13 Updating behavior of independent servers

By contrast, attempts to fit the behavior of HSP-hosted
servers (with either breakpoint 1 or 15) were unsuccess-
ful, for three reasons. First, since HSPs were compara-
tively responsive, there’s less variation to account for
and what was seen wasn’t consistent across the factors
under study, as shown in the contingency table in Fig-
ure 14. Second, the number of hosts in this stratum was
somehat maller (n=373). As a consequence of these two
factors, there were a number of empty cells in the con-
tingency table, leading to misleadingly high coeffi-
cients. Finally, a single HSP (Alabanza) failed to
respond at all by day 27. We conclude that the primary
source of inter-HSP variation is some factor which is
not tightly related to deployed software version.

OpenSSL Status

Apache Status Downrev 0.9.6x (x<d) 0.9.6d

Downrev .61 .71 .5

Up-to-date 1 .41 .18

Figure 14 HSP vulnerability by Apache and OpenSSL version

The Effect of TLD

Moore et. al. [18] report that TLD was a significant pre-
dictor of upgrading behavior in response to the Code
Red worm. In order to test for this effect we took our
day-27 results and filtered out all servers corresponding
to TLDs with n<10. The remaining TLDs were: .au, .ca,
.com, .de, .edu, .gov, .net, .org., and .uk) The chi-
squared test provides no evidence of this effect
(χ 2 = 2. 665; df=7; p=0.914). However, the sample size
in that study was larger and therefore may have more
resolving power.

Some Other Irrelevant Factors

In the search for other predictors, we also examined a
number of factors. These included:

• Certificate status (valid, self-signed, etc.) — as a
predictor of whether the site was "real" or not.

• Website "last-modified date" (only available for
418 sites) — as a predictor of whether the site was
being actively maintained.

Neither factor showed any significant predictive value.

5.5 Upgrade or Patch?

Downrev versions are a perrenial source of difficulty for
software vendors. Even for vendors, such, as OpenSSL,
who do not make money off of upgrades, a substantial
amount of time is spent providing support for older ver-
sions. Accordingly, vendors would very much like users
to upgrade. Users, naturally, resist upgrading because it
is disruptive. Upgrading to fix this kind of security
problem, which is inherently a very small change to the
code, is especially painful if it requires installing a com-
pletely new version with the attendant problems of
interface instability and new bugs.

Since the OpenSSL team released both patches and
a new version, an obvious question to ask is: did users
primarily patch their existing code or did they primarily
install a new version? Figure 15 shows the installation
of both patches and upgrades during the period under
study.

0

50

100

150

200

0 5 10 15 20 25 30

hosts

time (days)

upgraded
patched

Figure 15 Propagation of upgrades and patches

As Figure 15 shows, patching and upgrading are about
equally popular. This isn’t surprising since, as described
in Section 3.4, a large number of vendors shipped
patches to the OpenSSL versions they already shipped
rather than upgrades to 0.9.6e.

The data shown in Figure 16 shows three additional
interesting features. First, in the day immediately after
the announcement, vastly more users chose to patch
than upgrade. We suspect two causes for this behavior.
First, the patches were released an hour or two earlier
than the 0.9.6e and so a really diligent administrator

might have chosen to protect himself when only the
patches were available. Our data is not fine-grained
enough to test this hypothesis. The second possible
cause is that administrators were in a hurry to deploy a
stopgap fix and that patches were easier to deploy
because they were less disruptive.

This hypothesis is somewhat borne out by the data
between days 12 and 15 in which the number of fixed
servers upgraded servers increased while the number of
patched servers declined. What happened here is that a
number of administrators first deployed patches and
later upgraded to 0.9.6e.

In order to study this issue, we again built a logistic
model for the patch/upgrade choice (using Upgrade as
the event of interest). As before, we first stratified the
data on ISPSIZE = 1. This allowed us to obtain an ade-
quate fit for independent servers, which is shown in
Figure 16. Note that the model here does not include an
interaction between the OpenSSL version and Apache
version since an adequate fit was obtained without that
term.

Event: Upgrade

Variable Coeffi-

cient

Standard

Error

Z P value Odds

Ratio

95% CI

-0.250 0.650 -0.38 - - -Intercept

-1.28 0.698 -1.84 0.066 0.278 0.071-1.09χ1

-0.166 0.818 -0.20 0.839 0.847 0.171-4.21χ2

1.26 0.484 2.61 0.009 3.53 1.37-9.13χ3

Hosmer-le Cessie Test: P=0.92

Figure 16 Logistic regression model for upgrade/patch decision

The results here are relatively easy to interpret: users
who are up to date on Apache are more likely to
upgrade than apply patches. OpenSSL version is not a
significant predictor. It’s not clear why Apache version
would be an important predictor when OpenSSL ver-
sion is not. One possibility is that some subset of users
respond to security problems by upgrading to the latest
version. That subset would obviously have up to date
versions of Apache and then would subsequently
upgrade their OpenSSL versions in response to a vul-
nerability. One test of this hypothesis would be to mea-
sure the versions of other software deployed on the
machines in our sample.

We can see a similar situation with HSPs. Of the
193 servers with HSPSIZE > 1 that responded to this
vulnerability, 113 (58%) upgraded to newer versions of
OpenSSL. There were too many empty cells to perform
an adequate logistic fit but Figure 17 tells the story

5. In addition, we were unable to fit the saturated model
because there were no servers with (OpenSSL 0.9.6d and
Apache downrev).

clearly enough. Qualitatively, servers with downrev ver-
sions of Apache were more likely to be running down-
rev versions of OpenSSL and more likely to patch.
Servers with uprev versions of Apache were more likely
to be running OpenSSL 0.9.6 and more likely to
upgrade. Servers running OpenSSL 0.9.6d were more
likely to upgrade. There is no reason to doubt the obvi-
ous interpretation here—it’s vastly easier to upgrade if
you’re already more or less up to date.

Apache Downrev Up-to-date

OpenSSL Downrev 0.9.6x

(x<d)

0.9.6d Downrev 0.9.6x

(x<d)

0.9.6d

Patched 19 21 0 0 31 9

Upgraded 0 2 4 0 22 55

Figure 17 Upgrade/patch decision for HSPs

5.6 SSLv2 Not Disabled

Note that we have not discussed hosts which disabled
SSLv2. At no time during the selected period did more
than 10 servers which supported SSLv3 disable SSLv2
and only 5 consistently appeared to have done so. It’s
quite possible that the remainder of hosts which
appeared to have disabled SSLv2 were merely
attributable to measurement error.

This is a surprising result since this countermeasure
is extremely easy to deploy and completely removed the
vulnerability, intuitively one would expect administra-
tors looking for a stopgap to employ it first and only
later upgrade. However, essentially no administrators
did so. This could result from a number of causes, but
we believe that the most likely one is simply that
administrators didn’t understand that it was available.
Although the original advisory mentioned that only
SSLv2-capable systems were vulnerable, a large num-
ber (90+ %) of the vendor advisories did not. Moreover,
as described in Section 2.2, there was widespread con-
fusion about the scope of the problem, even among
security experts who had read the original advisory.
Therefore, it seems likely that administrators may sim-
ply have believed that fixing their implementation was
their only option. We hav e no way of directly testing
this hypothesis with our current data set. However, if a
similar vulnerability arises with an immediate
workaround but no fix we could examine how many
users apply the workaround.

5.7 Deployment of Version 0.9.6g

As described in Section 2.3, the rush to deploy fixes for
the initial round of bugs resulted in an incomplete fix

with some DoS vulnerabilities. The fixes for these vul-
nerabilities were deployed in version 0.9.6g. However,
deployment of version 0.9.6g was spotty. At day 27, the
end of the survey period, less than 5% of the servers
studied were version 0.9.6g. At the end of the study
period, 173 (19%) of the servers were 0.9.6g and 121
(14%) were 0.9.6e. It is not completely clear why this is
the case, but there were likely several contributing fac-
tors:

• The announcement was not as widely disseminated
as the original announcement.

• The problems were not as serious (DoS only).

• Not all vendors released updates for the problems
discovered in the first round of patches.

In general, it appears that users who upgraded to 0.9.6e
did not upgrade again to 0.9.6g.

5.8 Response to Worm Announcement

The announcement of the Slapper worm initiated a new
round of upgrades and patches. Figure 18 shows the
data for the first two weeks after the announcement of
the worm. As before, we have fitted the data to an expo-
nential (r2 = . 99).

35

40

45

50

55

60

0 5 10 15 20 25 30

vulnerable %

days

V = A*exp(-B*t) + C
A = 28.0
B = .008
C = 33.1
rˆ2 = .99

Figure 18 Upgrading after Slapper announcement

This second round of updates actually requires some
explanation. Why do people who didn’t upgrade the
first time upgrade when the worm was announced? One
possibility is simply that some administrators had not
heard of the original bug. However, since the worm was
announced through the same channels, this doesn’t
seem likely to account for the entire difference. A more
likely explanation is that administrators have explicitly
or implicitly adopted a strategy of only upgrading when
an exploit is available, rather than merely when a bug is
announced. As Beattie et al. [24] point out, it’s often
undesirable to update immediately, since patches are

flawed. Waiting until an exploit has been released there-
fore seems like a reasonable6 wait-and-see attitude.

In order to study this, we built a logistic regression
model. As before, we focussed on independent sites by
removing all sites from net blocks containing more than
one host. The results are shown in Figure 19. Note that
the fit here is not particularly good, as shown by the low
P value (P = .13). However, the saturated model does
not have a significantly better log likelihood (P > .10)
and none of the interaction terms are significant. How-
ev er, as before, we find that the fit parameters are stable
when we adjust the stratification point. In fact, if we use
15 as our cutoff, the parameters are qualitatively similar
but the fit is far better (P = .94).

Variable Coeffi-

cient

Standard

Error

Z P value Odds

Ratio

95% CI

-1.358 0.256 -5.31 - - -Intercept

0.647 0.296 2.18 0.029 1.93 1.07-3.45χ1

0.261 0.484 0.539 0.590 1.30 0.502-3.36χ2

0.897 0.270 3.32 0.001 2.45 1.44-4.16χ3

Hosmer-le Cessie Test: P=.13

Figure 19 Logistic regression model for post-worm updating

As Figure 19 shows, OpenSSL 0.9.6x (x<d) is a signifi-
cant but small predictor for post-worm response (odds
ratio=2.00; P = 0.029; 95% CI=1.07-3.41). Apache up-
to-date status is a somewhat better predictor (odds
ratio=2.45; P=0.000; 95% CI=1.44-4.16). Note, how-
ev er, that OpenSSL 0.9.6d is not a significant predictor.
We interpret this result as follows: any administrator
who was staying up to date on OpenSSL updated when
the bug was announced. The remaining administrators
respond to exploitable bugs. Since Apache status is a
signal for whether or not administrators respond to pub-
lic exploits, it therefore is a factor in predicting whether
or not administrators will upgrade after release of the
worm.

The implication of this analysis is that there are
three roughly equals-sized classes of users.

• Users who respond immediately upon the release
of security holes.

• Users who respond when exploits for holes start to
circulate.

• Users who do not respond at all.

In order to confirm this hypothesis, one would need to
do a horizontal study of updating behavior for a wide
number of independent packages with variation in the
known types of security flaw. A (non-random) sample

6. Note that Beattie et al. suggest that applying patches
either 10 or 30 days after release produces the optimal
shakeout/vulnerability tradeoff. Our data doesn’t show
any sign that users behave this way, howev er.

could potentially be found by examining other software
present on the systems in this sample.

Finally, we turn to the behavior of HSPs subse-
quent to the release of the worm. As mentioned previ-
ously, HSPs were in general very responsive to the ini-
tial disclosure of this bug. The single HSP that did not
respond at all to the initial disclosure (Alabanza)
responded completely upon release of the worm. This
single HSP has a large effect on our estimates of which
variables are significant. Without Alabanza included in
the fit, the results are qualitatively similar to those
shown in Figure 20. With Alabanza included in the fit,
OpenSSL version is no longer significant independently
but acts as a negative effect modifier for Apache ver-
sion. Since Apache version remains a strong predictor,
we have good reason to conclude that it is relevant, but
we are unable to draw firm conclusions about the effect
of OpenSSL version.

6 Policy Implications

Since this paper reports on a single disclosure event, we
should be wary of drawing firm conclusions. Neverthe-
less, if we take this event as representative, administra-
tor behavior in this case suggests some appropriate
methods for managing future vulnerabilities.

6.1 Timing of Disclosure

As we saw in Section 5.2, the deployment of fixes is
very strongly frontloaded. In both rounds of upgrading,
nearly all of the administrators who eventually fixed
their servers had done so within two weeks of the
announcement of the vulnerability. Howev er, a substan-
tial fraction of those administrators did not upgrade
within the first week. These two results have implica-
tions for the timing of bug disclosure.

Delayed Full Disclosure

Until recently it used to be quite common for vendors
and coordination centers to provide a limited advisory
that described the nature of the vulnerability in general
terms and notified users of the availability of a fix. In
some cases the vulnerability was never fully disclosed.
In others, the vendors would wait a "decent interval" to
allow users to upgrade. We are now in a position to
assess this practice.

Since many users never upgrade we can easily see
that it is never "safe" to release all the details of a vul-
nerability. There will always be a large number of users
who remain vulnerable at any giv en time. However, it is

similarly clear that a long delay between limited disclo-
sure and full disclosure serves no useful purpose. Since
essentially all users who are going to upgrade do so
quickly, full disclosure should take place within a
month or not at all.

We take no position on the relative merits of full
disclosure versus limited disclosure in general, except
to note the obvious fact that full disclosure necessarily
leaves a large number of users vulnerable. On the other
hand, it is often argued that full disclosure encourages
users to upgrade, which is no doubt a good thing.
Whether full disclosure has benefits that outweight
these costs is not a matter for discussion here. Obvi-
ously, this tension is far weaker in the case of Open
Source software, since the deployment of patches
almost inevitably provides enough information for an
attacker to discover the nature of the vulnerability.

Disclosure Before Fixes Are Available

As we saw in Section 5.2, the users who are going to
upgrade are very quick to do so. As a consequence, dis-
closing vulnerabilities before fixes are available results
in a very high marginal cost to those users, since those
users are vulnerable for the period between announce-
ment and release of the patch— whereas if disclosure
were withheld they would not be. The negligible use of
non-fix countermeasures seen in Section 5.6 suggests
that the availability of workarounds does not reduce this
marginal cost. If at all possible, vendors should be
given time to develop and deploy fixes.

6.2 What Fixes to Develop

Obviously, vendors would prefer to minimize the num-
ber of versions they support. In the best case, all users
would upgrade to the latest version. Even if this is not
possible, it would be desirable to issue patches only for
the most recent versions. Unfortunately, as we saw in
Section 5.5, a substantial fraction of users across all
versions preferred patches to upgrading. We don’t hav e
enough data to determine whether or not those users
would have upgraded were patches not available, but it
seems likely that many would not have. By contrast, the
value of devising and deploying workarounds seems
quite minimal, given that essentially no users chose to
deploy even the most minimal form of workaround.

6.3 Get it Right the First Time

It is universally agreed that OpenSSL 0.9.6g is superior
to 0.9.6e. Nevertheless, at day 27, deployment of 0.9.6e
was vastly greater than 0.9.6e for the simple reason that
0.9.6e got there first and solved the most pressing secu-
rity problem: the remote buffer overflow. Howev er, had

0.9.6g been released instead of 0.9.6e the DoS problems
would be fixed as well. The rush to release 0.9.6e is
more than understandable in view of the seriousness of
the bugs. Nevertheless, the result was not quite optimal.
Note, however, that users who upgraded after the worm
was announced naturally installed 0.9.6g. The impor-
tant lesson here is that users have a limited appetite for
security fixes and that vendors who wish to deploy all
their fixes should ensure that their first bugfix release
includes them all.

6.4 The Impact of Vulnerable Servers

The impact of Web server compromise is obviously
quite substantial. Aside from the high probability that
the attacker will leverage the compromised server into
administrator privileges, mere control of the server
itself is dangerous. The attacker can vandalize the site,
or, worse yet, recover the server’s private key. The lack
of reasonable revocation mechanisms means that pri-
vate key compromise is catastrophically bad for the site
in question, since it generally allows the attacker to
decrypt any connections which he can sniff using that
key, using a tool such as ssldump [25] The private key
is generally stored in the clear in the server’s memory
and so recovering the private key once the server is
comprompised is trivial and does not require achieving
root access.

One common question that people seem to have is
whether the residually vulnerable servers may not sim-
ply be defunct servers. This does not seem to be the
case. Although we have not done a thorough survey, the
list of vulnerable servers as of this writing includes a
number of "prestige" sites, including Universities, gov-
ernment agencies, and well known ISPs. One interest-
ing avenue of research would be to correlate blind user
ratings of site "liveness" against vulnerability.

Even if the vulnerable sites were defunct, this
would still be a security problem for the rest of the net-
work, because compromised machines can be used as
an attack platform. Recall that the Slapper worm does
exactly this, turning the victim machine into a zombie
for mounting DDoS attacks. Thus, it’s critical for every-
one for vulnerable machines to be fixed. This risk is
particularly great, since, as shown in 5.4, independently
operated servers are less likely to upgrade, and such
servers are the most difficult for victim sites to have
shut down. Potential measures along these lines would
be for ISPs to filter un-patched servers. Dick [26] sug-
gests a cleverer though perhaps more difficult option,
which is for sites likely to be vulnerable to DDoS to
pay other sites to upgrade.

6.5 Understanding HSP Policy

As we have seen, servers operated by HSPs generally
are more responsive than independent servers. However,
we have also seen that all HSPs are equally responsive.
Accordingly, users who care about security should
investigate their HSP’s upgrading policy and (if appro-
priate) insist that the HSP provide response guarantees.

7 Sources of Error

In any survey of this type, there are a number of poten-
tial source of error. This section describes the known
sources of error and attempts to assess their severity.

7.1 Av ailability Bias

Our sampling procedure is not guaranteed to give a
completely random sample. In particular, it favors sites
which advertise in Google. This creates two known
sorts of bias:

• Bias against private sites which do not advertise.

• Bias against large sites which restrict searching.

These forms of bias act in opposition. The first elimi-
nates some small sites which are unreachable via links.
One might hypothesize that such sites are less well
maintained and therefore less likely to respond to secu-
rity vulnerabilities. The second form of bias eliminates
sites which one might hypothesize were well managed
and therefore more likely to respond. The current data
do not allow us to evaluate the extent of either form of
bias.

The extent to which this sort of sampling bias influ-
ences our results depends on what sort of conclusions
you wish to draw. If one wishes to draw conclusions
about the probability that a web site one accesses will
have been compromised, this form of sampling is good.
If one wishes to estimate the percentage of potential
"zombie" machines available for DDoS, then it is possi-
ble that our sample is misleading. One way to cross-
check would be to sample IPs randomly as common
worms do. We hav e not done so.

7.2 Network Problems

This sort of experiment is subject to two forms of net-
work failure. In the first, the network to our sampling
machine fails and we are therefore unable to take data
during the outage. In such cases, we resample after the
outage. No such outage lasted more than 4 hours and so

we do not believe that this has an appreciable effect on
our data.

The second sort of outage is more troubling, since
there is no reason to believe that unavailability of hosts
is independent of other properties. However, since no
more than 6% of hosts became unavailable during the
sample period, the bias is relatively small compared to
the size of the effects we’re measuring.

7.3 Measurement Error

Remote probing is subject to several forms of measure-
ment error:

• False version numbers.

• Load balancing.

• Acceleration

False version numbers

It’s possible, though inconvenient, to modify one’s
OpenSSL to advertise a different version number. Thus,
one could (for instance) advertise OpenSSL 0.9.6e
while actually running OpenSSL 0.9.6d. We do not
believe that this is widely done. Anyone with the exper-
tise to make such modifications could quite easily apply
patches.

Load Balancing

Suppose an operator runs more than one server behind a
load balancer. For some reason or other, one machine is
fixed and the other is not. In this case, we will get
inconsistent results depending on the load balancer. In
our tests, about 10 machines had repeated flip-flops
between fixed and unfixed.

Accelerating Proxies

It’s quite common to use an SSL reverse proxy [27] to
offload SSL processing from a server. Howev er, since
the proxy is otherwise transparent, this means that the
advertised OpenSSL version (from the server) might
not match the real SSL implementation (whatever is on
the proxy. Since most such proxies are based on
OpenSSL, this might mean the proxy was vulnerable
ev en though the server advertised a non-vulnerable ver-
sion. Our data shows a small number of hosts (<10)
which advertise non-vulnerable versions of OpenSSL
but appear under probing to be vulnerable. Careful eval-
uation of the OpenSSL code indicates that the probes
must generate an error with any repaired SSL version.

Therefore, we believe that this effect is responsible for
the anomalies in question.

Block Ciphers versus Stream Ciphers

Subsequent to the survey we discovered a possible
source of false negatives—hstest works by using a
key-arg one byte longer than it should be. This causes
an overrun when a block cipher is used but not when a
stream cipher is used. Thus, if we negotiate a stream
cipher, then the handshake will succeed. However, this
is not a significant source of false negatives, for two
reasons:

1. In SSLv2 the client chooses the cipher suite from a
list of those acceptable to the server. Our client
prefers block ciphers.

2. Nearly all servers support at least one block cipher.

Double-checking with a client programmed to support
only block ciphers yields essentially identical results
(+/- 1 server). Therefore, we do not believe that this is a
significant source of error.

7.4 Analytical Issues

Sample Size

The relatively small sample size (n=890) presented
some analytical challenges. In some cases, were unable
to fully fit parameters of interest because the corre-
sponding cells in the contingency table were empty,
leading to absurd results. A larger sample would pre-
sumably have fewer completely empty cells and be
more amenable to analysis.

Ser ver Independence

As noted in Section 5.4, not all of our samples are com-
pletely independent. We adjusted for this by stratifying
the sample into "independent servers" and HSPs. How-
ev er, this stratification is necessarily somewhat impre-
cise. However, the fact that which predictors are signifi-
cant is relatively insensitive to where the exact bound-
ary is placed suggests that the stratification is good
enough to draw reasonable conclusions about relevant
factors. Confirmation of these results could be achieved
by directly contacting server administrators and deter-
mining exactly who is responsible for which hosts.

8 Related Work

The general shape of the upgrading curve has been
observed by previous authors. The closest related work
is by Provos and Honeyman [28] who measured the

deployment of OpenSSH versions subsequent to the
release of the SSH CRC vulnerability [29]. The authors
found a somewhat lower asymptotic (20%) upgrade
rate, but it’s not clear how reliable it is since in some
cases they notified the hosts under study. Cheswick et
al. [30] report similar results for response to a vulnera-
bility in BIND. This work differs from previous work in
three important respects. Finally, Moore et al. [18]
report on user upgrading behavior in response to the
Code-Red worm.

This work differs from previous work in three
important respects. First, we follow the trajectory of
hosts from release of a bug through release of a worm
that exploits the bug. Previous work only measured one
phase or the other of upgrading. This allows us to accu-
rately compare response to different security stimuli.
Second, because we are directly probing for vulnerabili-
ties rather than merely version numbers, we are able to
determine when servers have been patched or counter-
measures have been applied as well as whether they
have been upgraded. As Section 5.5 shows, a significant
number of administrators opt to patch and therefore it’s
important to measure patch rate when patches are avail-
able.

Finally, since this is a longitudinal study of a spe-
cific set of hosts, we are able to characterize the various
factors that predict administrator responses. We are not
aw are of previous work that addresses this issue.

Initial Release Post Worm Upgrade/Patch

Factor Overall Independent Independent Independent

1.40 2.82 2.45 N/AOpenSSL <

0.9.6d (χ1)

4.58 4.44 2.00 N/AOpenSSL

0.9.6d (χ2)

- 2.39 - 3.53Apache Up-to-

date (χ3)

6.14 N/A - -χ1 * χ3

- N/A - -χ2 * χ3

Figure 20 Summary of significant predictors

9 Conclusions

We hav e described a longitudinal study of user response
to security flaws. Our study begins with the announce-
ment of the vulnerability and continues through the
release of a worm that exploits that vulnerability. We
report two primary results, one regarding the rate of
user response and the second regarding the composition
of the responding groups.

We first observe that administrator response is
poor. Three weeks after the initial vulnerability
announcement, fix deployment had leveled off and 60%

of the sample was still vulnerable at 27 days. Data col-
lected in the three weeks after the release of the Slapper
worm showed a similar pattern with a projected asymp-
tote of 32% vulnerable.

We also identified a number of predictors for server
behavior, summarized in Figure 20. In the first round of
upgrading, servers running recent versions of OpenSSL
and Apache were overrepresented in the responding
population. In the second round of upgrading, servers
running recent versions of Apache were overrepre-
sented. Even after two rounds of upgrading, a fair num-
ber of servers running relatively recent OpenSSL distri-
butions remained vulnerable, including several "pres-
tige" servers. In general, large hosting service providers
appear to be rather more responsive. Roughly twice as
high a percentage of HSPs upgraded in the first round
as compared to the population average.

Acknowledgments
The author would like to thank the ICIR Wednesday
Seminar, in particular Sally Floyd, Mark Handley, Vern
Paxson, and Scott Shenker, for their comments on the
talk that turned into this paper. Jeff Schiller warned me
about the bug prior to its release, allowing me to get my
probes in place. Kevin Dick, Lisa Dusseault, Allison
Mankin and Terence Spies provided discussions about
experimental technique and direction. Phil Beineke pro-
vided assistance with the statistical analysis. Thanks are
also due to Frank Harrell and the members of the R-
help mailing list for assistance with R.

References

[1] Netcraft, Web Server Survey Home Page.
http://www.netcraft.com/

[2] CERT, “Apache Web Server Chunk Handling Vul-
nerability,” CERT Advisory CA-2002-17 (June 17,
2002).
http://www.cert.org/advisories/

CA-2002-17.html

[3] Nunes, F., “bugtraq.c httpd apache ssl attack,” Bug-
traq posting (September 10, 2002.).

[4] Laurie, B., "OpenSSL Security Alert - Remote Buffer
Overflows", OpenSSL Mailing List (August 2002).

[5] Akkerman, W., Debian Security Advisory
DSA-136-1 (July 30, 2002).

[6] Trustix Secure Linux Advisory 2002-0063 (July 29,
2002).

[7] EnGarde Secure Linux Security Advisory
ESA-20020730-019 (July 30, 2002).

[8] Ahlberg, D., Gentoo Linux Security Announcement
(July 7, 2002).

[9] Slashdot, OpenSSL Security Update.
http://developers.slashdot.org/arti-

cle.pl?sid=02/07/30/1323226&mode=thread&tid=128

[10] Fr eeBSD Security Advisory FreeBSD-
SA-02:33.openssl (July 31, 2002).

[11] Apple Security Update 2002-08-02 (August 2,
2002).

[12] NetBSD Security Advisory 2002-009 (September
22, 2002).

[13] Benham, M., “IE SSL Vulnerability,” Bugtraq
posting (August 5, 2002).

[14] OpenPKG, OpenPKG-SA-2002.008 (July 30,
2002).

[15] Hittel, S., Modap OpenSSL Worm Analysis.
http://analyzer.securityfo-

cus.com/alerts/020916-Analysis-Modap.pdf

[16] Murray, E., SSL Server Security Survey (July 31,
2000).
http://www.lne.com/ericm/papers/ssl_servers.html

[17] Weimer, F., “Remote detection of vulnerable
OpenSSL versions,” Bugtraq posting (September 10,
2002).

[18] Moore, D., Shannon, C.,, and Claffy, K., “Code-
Red: a case study on the spread and victims of an Inter-
net worm,” Internet Measurement Workshop (2002).

[19] Kleinbaum, D., and Klein, M., Logistic Regres-
sion: A Self-Learning Text, 2ed, Springer-Verlag, New
York (2002).

[20] Hosmer, D., and Lemeshow, S., Applied Logistic
Regression, 2ed, Wiley, New York (2000).

[21] Ihaka, R., and Gentleman, R., “R: A Language for
Data Analysis and Graphics,” Journal of Computational
and Graphical Statistics.

[22] Harrell, F. E., Design Library.
http://hesweb1.med.virginia.edu/bio-

stat/s/Design.html

[23] Harrenstien, K., Stahl, M. K., and Feinler, E. J.,
“NICNAME/WHOIS,” RFC 954.

[24] Beattie, S., Arnold, S., Cowan, C., Wagle, C.,
Wright, C., and Shostack, A., “Timing the Application
of Security Patches for Optimal Uptime,” Proceedings
of LISA XVI (2002).

[25] Rescorla, E., ssldump.
http://www.rtfm.com/ssldump

[26] Dick, K., Personal communication..

[27] SonicWall, High Availability Options for Son-
icWALL SSL Devices.
http://www.sonicwall.com/products/↵
documentation/High_Availability_SSL.pdf

[28] Provos, N., and Honeyman, P., “ScanSSH - Scan-
ning the Internet for SSH Servers,” 16th USENIX Sys-
tems Administration Conference (LISA) (2001).

[29] Zalewski, M., “Remote Vulnerability in SSH dae-
mon crc32 compensation attack detector,” RAZOR
Bindview Advisory CAN-2001-0144 (2001).

[30] Cheswick, W., Bellovin, S., and Rubin, A., Fire-
walls and Internet Security, 2nd edition (In press.).

