
W I N D R I V E R W H I T E P A P E R

Linux In Embedded Systems:
Where Are The Benefits?

If GPL issues are somehow manageable, device makers
might still figure they can reduce software costs with
linux by relying on the linux community for support.
Unfortunately, that appears unlikely at this point. This
is not due to a lack of interest or passion on the part of
the linux community, but because there is no common
platform to rally around.

Jerry Fiddler
Chairman and Co-founder
Wind River

2

linux in their corporate networks. The
product developers at these companies
hear that linux in the server world is
free, that it’s well supported, and that
it is highly reliable. They want to know
if linux can provide these benefits in
embedded devices. We had the same
questions at Wind River. We were
founding members of the Embedded
Linux Consortium, and we developed a
complete linux version of one our major
software tools as well. Based on this
experience and many conversations
with customers, it seems worthwhile
to offer some observations on linux
and whether it can provide meaningful
benefits in embedded devices.

2. Linux is Open-Source Software
Linux is just one member of a larger
category, called open-source software,
which has been around for a long time.
Perhaps the best-known open-source
program, and one of the longest-lived,
is the UNIX operating system. Open-
source software comes with a set of
principles, rules, and traditions that
challenge software companies and
their customers in an interesting and
worthy way.

Properly speaking, linux is a kernel,
created and evolved by Linus Torvalds.
A kernel is not an operating system,
as Torvalds and others have taken
pains to make clear. The linux kernel is
architecturally similar to the kernel of
UNIX; it includes the core processes

“Due to the structural
differences in the two fields,
linux is not likely to simply
transfer its server success into
the embedded device arena.
Instead we have to assess linux
on its own merits relative to the
advantages that device makers
are looking for.”

and event handlers that enable the
middleware and applications wrapped
around it to do what they do. When
people call linux an operating system,
they usually are referring loosely to a
package that includes the kernel and a
number of essential functional building
blocks, such as Sendmail, Apache,
TCP/IP, and various application program
interfaces (APIs) that enable the kernel
to process information and communicate
the results. Following common usage,
I’ll use “linux” to mean an operating
system, based on the linux kernel,
which also includes essential APIs
and other applications that customers
expect and require.

In some ways I’d rather not be dis-
cussing operating systems (much less
kernels) at all, because the focus at
Wind River is on building development
platforms that subsume operating
systems into higher-order, integrated
solutions for customers. This is a major
trend in our industry, and we expect
it to expand considerably in the years
to come. On the other hand, linux is
being proposed as one of the operating
systems we should consider building
into our platforms (which also include
middleware, APIs, tools, and other
elements). So we need to take a good
long look at linux with our customers
in mind.

3. Benefits Associated with Open-
Source Software
There are several areas where open
source software seems, at least at
first glance, to have some promise for
builders of embedded devices.

Low Acquisition Cost. The main calling
card for open-source software among
corporate customers is that there is
almost no cost to acquire it – you
can readily download linux from the
Internet, for example – and you can
legally use it without paying anyone for
it. These two qualities have led people
to say that open-source software is “free,”
however, free does not mean there are
no consequences or limitations. Open-

1. Introduction
In a remarkably short time, linux has
brought new attention to open-source
software and influenced the strategies
of some of the world’s biggest software
companies. Wind River is not one of
those giant software companies (at
least not yet), but we are the largest
provider in a significant part of the
global software market, which means we
have to pay attention to linux and open-
source software, too. Our customers
make the many millions of non-computer
products that rely on microprocessors
for essential functionality. We call these
products “embedded devices,” because
the microprocessors that run our soft-
ware are embedded or built into a device.
People don’t think of these products as
computers, which is the main distinction
between our customers and companies
who make PCs and servers. Their cus-
tomers do things like start up Windows,
launch programs, and run spreadsheets.
The customers of device makers do
things like make a phone call, fly a
plane, and guide remote-control
robotics systems.

The companies that make the
phones, planes, robotics systems, and
a great many other products certainly
need good software; they spend billions
of dollars every year to acquire and
develop it. The reason they buy soft-
ware from us is that our products and
integrated platforms enable them to
create and implement their software
faster, less expensively, and at lower
risk. This, they tell us, is our big contribu-
tion to their business: not our software
per se, but the head start, the reduced
cost, and the reliable support that we
provide them so they can get their end
products to market faster, offer more
features for less money, and develop
follow-on products more efficiently.

Our customers in the device world
are constantly looking for any edge they
can get, and they have seen linux make
rapid inroads into the network server
market. Many of them, after all, are
large companies whose MIS depart-
ments are either evaluating or using

source software comes with a license,
like other software, and users are
obligated to follow its terms as they
would with any other program.

The license for most contemporary
open-source software is known as
the “GPL,” which is short for “GNU
public license.” This license requires,
among other things, that if you create
programming based on software you
got from the open-source community,
then the modifications you make or
the software you create have to go
back to the community so everyone
else can use them also. This sounds
fairly straightforward, not to mention
equitable, but as I’ll discuss later, it is
anything but clear when companies
apply it in actual commercial products.

Unpaid Community Support. Another
attractive quality of open-source soft-
ware – particularly for companies who
now pay significant sums for software
upgrades, testing, porting, and other
activities – is that the open-source
community does most of these things
for free. An international network of

3

software programmers collaborates
together voluntarily, out of a sense of
mission, to upgrade and enhance the
software. Different pieces of software
are handled differently by the various
communities devoted to them, and the
differences can be fairly wide. The
UNIX community, for example, has had
more than 30 years to settle on stable
processes and procedures for adding
new capabilities and upgrading the
existing ones. The linux community is
much younger, and is still in the early
stages of sorting out how the program
will evolve.

Intangible Benefits. Open-source soft-
ware also has a number of less tangible
qualities, which are perhaps more
important to programmers personally
than to the companies that employ
them. For instance, there’s a lot more
room to be creative and exploratory
with open-source software than with
most proprietary programs. There’s
also an international, collegial feeling
to the open-source community, which
crosses borders freely on the Internet.

SOFTWARE DEVELOPMENT COSTS

Here are some of the major cost categories relating to software
development. Note that many of these are human-based,
labor-intensive activities that require people with significant
experience. In other words, programmers and their support
teams are expensive. Even if linux enables you to start without
the first two items on the list, it’s hard to avoid the others.

• Vendor & technology selection
• Acquisition costs
• Integration costs
• Development costs
• Testing
• Training
• Documentation
• Manufacturing
• Maintenance
• Derivation for follow-on projects

4. Benefits Associated with Linux
Linux has all the qualities of open-
source software described above. It also
has the additional attribute of real-world
success in the server environment.
Linux has cracked the corporate net-
work server market so effectively that it
is replacing network server operating
systems provided by such well-known,
well-regarded companies as Sun
Microsystems, IBM, Hewlett-Packard,
and Microsoft. In addition to low
acquisition cost and outside support,
linux also offers high throughput, ready
accommodation of prevailing communi-
cations standards and interfaces, and
reliability in running mission-critical
corporate applications. In other words,
linux is a technological match for the
competition in the network server
operating system environment.

One sign of linux’s status in the net-
work server market is that it is already
being exploited for advertising and
marketing purposes, in a way that the
open-source community probably never
imagined. Oracle, for example, has run
ads calling linux “unbreakable,” as part
of its campaign to win business against
its biggest competitor, IBM. IBM offers
an operating system optimized for its
own database and application programs.
Oracle offers a database and applica-
tions, but no operating system. To offset
this potential disadvantage, Oracle is
pushing linux as better than other
operating systems, specifically including
IBM’s. Note that in this case, a vendor
is promoting linux because it serves a
competitive purpose, not necessarily
because it provides advantages to
customers.

So let’s summarize what customers
want when they say they’re interested
in linux. First, they want an operating
system that has little or no risk
associated with the cost – it’s free
to start with and future improvements
will be free as well. Second, prospective
linux users want software that is robustly
supported by an external, community
of smart, passionate people. Getting
the first two qualities implies a third:

technological suitability for the job at
hand. If linux was not a success in the
server space, I would probably not be
writing this paper and you would prob-
ably not be interested in reading it.

5. Embedded Devices: Can Linux
Duplicate Its Server Success?
The success of linux in corporate
network servers seems at first blush
like a model for success in embedded
devices. After all, embedded devices
need some of the same technological
attributes from their operating systems
that network servers do, including high
reliability and built-in readiness for
communications. Furthermore, markets
for many embedded devices, particularly
consumer digital electronics and network
infrastructure, are just as competitive
as the network server market. Device
makers are always looking for ways to
reduce costs, and software is one of
their biggest investments in the R&D
area. A careful analysis, however, shows
that the two environments – network
servers and embedded devices – are
actually very different when it comes to
operating systems. I’ll touch on a few of
the differences briefly, before assessing
linux’s suitability in embedded systems.

Hardware Architecture. There has been a
big push in network server technology
to minimize investment risk through
hardware standardization. There are
therefore, only a handful of chip archi-
tectures in all the servers offered by
IBM, HP, Sun, and other server manu-
facturers. Furthermore, the surrounding
hardware architecture is evolving slowly,
with the implicit cooperation of vendors
and buyers, to keep things stable and
predictable for corporate customers.

The device market could hardly be
more different. Customization is the
rule, with numerous microprocessor
architectures, systems-on-a chip, and
field-programmable gate arrays (FPGAs)
proliferating rapidly. Customization is
vital for cost and efficiency. To succeed
in the market, each new product needs
to better its competitors and predecessors

4

for cost, power consumption, function-
ality, and physical size. Wind River
alone has 4,000 customers involved in
this Darwinian struggle. It’s hard to
imagine General Motors designing a
new server for its corporate network,
but GM is actively pushing its electronics
suppliers to come up with smaller,
faster, lighter, lower-cost, and less
power-hungry embedded-system
designs for engine systems, braking
systems, and cabin comforts – each
and every model year.

Software Interoperability. Servers and
embedded devices also differ dramatical-
ly in software interoperability require-
ments. Most servers can run any of the
major server operating systems, and
most application programs can run on
all the major operating systems as
well. This is a big reason linux can
move in and take market share: the
server environment has developed in
such a modular, interoperable way
that a new operating system can be
plugged into it without disrupting
overall functionality. Again, it’s almost
the exact opposite in the device world.
Integration of microprocessors, operat-
ing systems, and application software
is now so tight that few elements are
interchangeable once a product is fully
designed and developed. This tight
integration is not an accident or the
result of poor design; it’s intentional,
aimed at achieving the highest possible
level of operating efficiency.

Design Goals. In corporate server
networks, disk space and processing
cycles are relatively abundant, so there’s
not much incentive or upside to slimming
down the operating system. In fact, it’s
a good idea to just throw in anything
and everything that any user might ever
want, so it’s already there when they
want it. In embedded devices, designers
take the exact opposite approach. The
question is not “did we leave anything
out?” but “what can we get rid of?”
There is simply not enough physical
space, memory, or power to include

anything that’s not essential to a given
device at a given price point. Linux has
been a good fit in the server space
because the community has loaded it
up with everything except the kitchen
sink, and developers are creating more
modules and components and add-ons
(“bloatware”) all the time. The device

market is another world entirely, where
adding one thing often means eliminat-
ing one or more others.

Strategic Importance of the Operating
System. In corporate networks where
linux is doing so well, the choice of
a server operating system is rarely
central to a company’s mission.
Network processing cycles are a utility,
like electricity and plumbing. Such
utilities are basic to business, of
course, and we miss them when we
don’t have them, but everyone expects
them to be provided so they can do
what really matters to them. For device
makers, what matters is differentiating
their products in competitive markets,
and extending the life-cycle of successful
product franchises as long as possible.
Software is a key determinant of their
success in both activities.

Consider the difference between a
mobile phone selling for $100 and one
selling for $200. The physical units may
look nearly identical, but the more
expensive phone must provide clearly
superior functionality. The upgrade
path between the two phones will be

“Commercial software
companies are learning from
the open-source model. So
if linux itself is not the best
answer for device makers, their
existing suppliers can still offer
some of the qualities of the
open-source experience.”

defined largely by capabilities achieved
as much with software as with silicon.
In other words, software is a key link in
the device-maker’s value chain. Network
server operating systems are not a key
link in the value chain of, say, Sony. So
the risk associated with a adopting a
new operating system for their products
is in a completely different category for
device makers than it is for MIS depart-
ments exchanging operating systems
for network servers.

6. How Does Linux Stack Up In
Embedded Systems?
Due to the structural differences in the
two fields, linux is not likely to simply
transfer its server success into the
embedded device arena. Instead we
have to assess linux on its own merits
relative to the advantages that device
makers are looking for. Referring back
to the first section of this paper, those
potential benefits include low cost, low
risk, and technological suitability.

Software Is Not Free. “Open-source is
free only if your time has no value.”
That’s the phrase of Jamie Zawinski,
the principal architect of the Netscape
browser, which was eventually open-
sourced. In other words, you may be able
to get a piece of software for nothing,
but everything you do with it after
that event costs you something. Our
customers certainly know how high
those costs are, and we’ve summarized
some of the categories in the chart on
page 3. You can see that most of the
costs arise after a company actually
licenses the software. They include
integration, development, testing, training,
documentation, manufacturing, main-
tenance, and derivation for follow-on
projects. These costs are substantial,
which is why our customers report that
most of the tens of billions of dollars
they spend on R&D each year are for
software. Open-source software is not
going to make most of these costs
disappear, and may in fact increase
them. So far, the only companies
making money from linux are those

charging people for supporting it.
Before Cygnus Solutions was acquired
by Red Hat, its tagline was, “We make
free software affordable.”

There May Be Hidden Costs. Beyond the
real costs of life with software, there
appear to be significant hidden costs
lurking in linux. As mentioned earlier,
the GPL requires that people who use
the linux kernel to run their own soft-
ware must make that software open
and available as well. A key passage in
this reads as follows: You must cause
any work that you distribute or publish,
that in whole or in part contains or is
derived from the Program or any part
thereof, to be licensed as a whole at no
charge to all third parties under the
terms of this License.

This language creates a potentially
huge intellectual property problem
for makers of embedded devices. A
reasonable interpretation is that all
the software contained in a device, if
that device “in part contains” any GPL-
licensed code, must be “licensed as a
whole, at no charge… under the terms
of this license.” This is particularly
crucial for device makers, who license
all their software in their devices as
one bundle (“the ROM in the phone”).
If part of the software is covered by the
GPL, some would argue, then it’s all
subject to the GPL and must be given
to the open-source community.

In a recent article in Embedded
Systems Programming, David Beal and
Michael Barr call this potential liability
in linux “a myth.” But as far as I can
see, they fail to make their case. They
certainly do not adequately address the
issues raised by the phrase “licensed
as a whole.” Instead they suggest that
the GPL doesn’t affect new, proprietary
code if a device maker doesn’t touch
the linux operating system and just
runs the proprietary software alongside
it. This side-by-side approach may be
an acceptable interpretation of the GPL
in theory, but it’s hard to apply it in
practice. Device companies have abundant
reasons to modify linux and to integrate

it with firmware or application code, for
reasons of functionality and perform-
ance. The upshot is, their end products
would always “in part contain” some
GPL code, which in turn would trigger
the license.

Even if device makers use the side-
by-side interpretation of the GPL, and
don’t modify linux itself, they’re still
vulnerable. In fact, unanticipated liability
is probably the biggest potential problem
with the GPL for device makers, because
GPL licensing is viral. It spreads, and it
infects what it comes in contact with,
specifically any software that may be
bundled with GPL code in a product. As
a result, a high level of vigilance is
required to keep track of what is open
source, what is not, and what’s in the
gray area in between. In today’s world,
with so much outsourcing of product
components to suppliers, it’s hard to
track every last thing that comes into
your own product at assembly time. A
bit of code that violates the GPL could
delay release of a product, or worse.
We often hear from our customers on
this issue: They are concerned about
“GPL-ed code” coming to them from
other suppliers.

At Wind River, we did full linux devel-
opment of a Tornado toolset, with some
modifications of the operating system
to make it more suitable to embedded
applications. We then decided not to
release it because it would push our
customers into the gray area. Our job,
they keep telling us, is to simplify and
accelerate their efforts to create new
and more successful intellectual prop-
erty. We didn’t see how we could say to
them, “Here’s this really great toolset,
and it works with linux, but you may be
compromising the intellectual property
you create with it.”

External Support May Not Be Available.
If GPL issues are somehow manage-
able, device makers might still figure
they can reduce software costs with
linux by relying on the linux community
for support. Unfortunately, that appears
unlikely at this point. This is not due to

5

a lack of interest or passion on the part
of the linux community, but because
there is no common platform to rally
around.

The fact is that embedded devices
have critical requirements with respect
to real-time operation, footprint, speed,
and other parameters, and to make
linux work in this environment it must
be customized, sometimes significantly.
This gets pushed even further when
devices are designed with a high level
of integration among hardware, soft-
ware, and firmware. The result is that
each customer potentially has a variant
of linux that the community has never
seen and cannot effectively support.
Multiply this by the number of products
in the embedded arena and you could
soon have thousands of potentially
tweaked and tuned versions of linux
that no one outside a device maker’s
software team has ever worked on,
and perhaps even numerous versions
within a single company, created and
tuned for different products by different
teams. The support burden necessarily
falls back on the device companies
themselves.

The specific support problem is
exacerbated by a general evolution
problem. The open-source community
has not yet established order in the
linux development process, so at this
point there is rigid control of the kernel,
contrasted with loose control of every-
thing else. Torvalds has reserved new
releases, of the kernel to himself. In
contrast the rest of the community
appears to be exploring multiple versions
of even fundamental elements such as
the TCP/IP implementation. There is
no formal source-code control, and no
configuration management scheme in
place. There is no road map, because
there is no one to create it, except spo-
radically on a module-by-module basis.

So for now, getting timely support for
embedded linux almost certainly means
hiring people on staff or paying some-
one to do it for you – if you can find
people with the right experience and
aptitude. Outsourcing seemed to be the
favored solution to the linux support

problem, and a number of companies
sprang up to charge customers for
embedded linux support. (Remember,
they’re making “free software afford-
able.”) Now, it appears that most of
these companies have been consolidated
out of existence or are retreating from
the market. Certainly no viable business
model has emerged for commercial
support of linux in embedded systems,
leaving device makers largely on their own.

Technical Challenges Remain. The third
main criterion regarding linux, as far as
device makers are concerned, is that it
must do the job in their products. There
are as yet very few products running
embedded linux, so it’s hard to gener-
alize about technical performance, but
we can make some observations in a
few key areas:
• Real-time processing. Linux is not a

real-time operating system, which
presents an immediate technical
challenge to the many device makers
who need real-time processing. To
increase its response time, some
customers tell us that they’re “run-
ning linux under a real-time kernel”
but as we’ve already noted, linux is
a kernel. So apparently these manu-
facturers are actually running some
hybrid form of open-source software.
Other device makers modify the linux
kernel to make it run faster, though
this may undercut some of linux’s
other advantages. Once you start
modifying any operating system,
you’re committing to an investment
in programming and support resources
that generally can’t be provided by
someone else. The free software you
started with becomes a lot less free
when you need to do all of your own
support and maintenance.

• Efficiency. Device designers excel in
creating products of increasingly rich
functionality from rapidly shrinking
budgets for size, weight, power, and
cost. Semiconductor manufacturers
are doing their part to make ever-
more-efficient products possible,
and software vendors are expected
to do their part as well. In a server, a

larger memory footprint or a slightly
less efficient operating system is not
a big deal. In an embedded device,
operating system efficiency can
determine how powerful the CPU
must be, and footprint can determine
how much memory is required. Both
translate directly into cost, battery
life, functionality, and ultimately the
product’s market competitiveness.
At Wind River, we work constantly
on making our proprietary operating
system, VxWorks, do more with less.
Recently one of our wireless device
customers was preparing to develop
software to run under linux until it
became clear that once they got the
operating system into shape to do
the job, it would eat up 2 megabytes
of the product’s available memory.
The comparable configuration with
VxWorks was 250 kilobytes. The
customer needed to conserve memory
to hit its price and functionality targets,
which made the “free” software too
expensive in memory terms.

• Start-up Time. A large percentage of
devices with embedded systems are
supposed to respond instantly to user
commands. Programmers who come
into the device world from the PC or
server world are sometimes surprised
to discover that unless an embedded
system runs on a standard Intel
architecture, fast booting from linux
is a major challenge. Device makers
also work hard on solving the prob-
lem of how to initialize, manage self-
test routines and bootstrap non-Intel
architectures, and linux does not
offer any help in these areas.

• Tools. From what we can see, there
is a serious lack of development
tools for embedded programming
with linux. Developing, testing, and
debugging production-quality code
simply takes too long when you don’t
have the right tools for the job, and
the tools required for embedded
development (such as appropriate
cross compilers and debuggers, and
real-time analysis tools) are very
different than those that are appro-
priate in linux’s more traditional

6

markets. Not long ago one of our
customers, a company known for
its outstanding product design,
was considering linux for a wireless
networking device. But when the
company realized it would take most
of a year to develop the product to
run under linux, it came to Wind
River instead and got the product
to market in just four months.

7. So What’s A Device Maker To Do?
Some of our device customers have
thought through most of the foregoing
issues and have come to us with a
question: “How can we get the benefits
of something like linux without losing
the benefits of what we get from you?”
One of the first things we do is ask
them if they really would accept
“something like linux ” rather than
linux itself.

If device makers need a non-real-
time, UNIX-like operating system,
UNIX may be a better solution. UNIX is
technically more advanced than linux,
and has a much longer heritage of
commercial application. A community-
supported version of UNIX, called
FreeBSD, is available for very low cost
evaluation. Customers with specific
plans can also take advantage of BSD/
OS, a fully supported version of UNIX
offered by Wind River, which comes
with a full set of tools and clear devel-
opment roadmaps. Both BSD/OS and
FreeBSD are free of GPL-related intel-
lectual property issues.

The rest of the answer to our cus-
tomers’ question is that commercial
software companies are learning from
the open-source model. At Wind River,
we are now giving away more source
code with VxWorks than we ever
did before, and we are offering more
development tools online. The idea

is to give customers some of the
underlying benefits of the open-source
approach to software and software
development. We want to do even
more, to the extent we can sort out the
intellectual property topics, customer
privacy concerns, and other issues. So
if linux itself is not the best answer for
device makers, their existing suppliers
can still offer some of the qualities of
the open-source experience.

In the end, it’s clear that most of our
customers want rock-solid software
that combines a true real-time operat-
ing system, middleware, utilities, and
applications tuned to their products
or industries. They want all these
things integrated into a platform that
accelerates their development work,
at a price they can plan around, with a
predictable technology roadmap, from
a supplier who will bend over backward
to make them happy. It’s perhaps possible
that linux may evolve to offer device
makers these fundamental business
benefits some day, but today, and for
the foreseeable future, its disadvan-
tages clearly outweigh its attractions.

Wind River Worldwide Headquarters
500 Wind River Way
Alameda, CA 94501 USA
Toll free 1-800-545-WIND
Phone 1-510-748-4100
Fax 1-510-749-2010
Inquiries@windriver.com
Nasdaq: WIND

For additional contact information,
please see our Web site at www.windriver.com.

Wind River, the Wind River logo, Tornado,
and VxWorks are registered trademarks
of Wind River Systems, Inc. Any third-party
trademarks referenced are the property
of their respective owners.

For further information regarding Wind River
trademarks, please see:
www.windriver.com/corporate/html/trademark.html

©2002 Wind River Systems MCL-WP-LNX-0210

