AS1. SPECS Page 1 of 3

CPSC 411 Conpil er construction |
Aut hor: Robi n Cockett
Date: 9 Jan. 2002

Assi gnment #1: Conpiler for Mnusculus (see link for grammar with |eft
recursions renoved)
Due date: 29th Jan 2002 (nodified from28 January 2002 to equalize |abs.)

| mpl enent a conpiler to "stack machi ne code" (described below) for the

| anguage M nuscul us whose syntax is defined by the grammar bel ow

In this assignment you may use LEX (in fact you MJST use LEX) but please
wite a recursive descent parser (i.e. you cannot use YACC yet!). It is
inmportant to attend the labs as they will be discussing this assignnent

and will also introduce LEX

M ni scul us granmar :

prog -> stnt.
stnt -> I F expr THEN stm ELSE stnt
| WHI LE expr DO stm
| DO stmt UNTIL expr | READ ID
| 1D ASSI GN expr
| PRINT expr
| BEA N stntlist END.
stntlist -> stntlist stnm SEM COLON
| .

expr -> expr addop term

| term
addop -> ADD

| SUB.
term-> termnul op factor

| factor.
mul op -> MJL

| DV
factor -> LPAR expr RPAR

| ID

NUM
| SUB NUM

This grammar has left recursive nonternmnals. The grammar with the |eft
recursions renoved autonatically is here . Notice this file calcul ates
the first sets and follow sets of the above grammar and then transforns
the grammar and i ntroduces new nontermnals in this process.

VWere the tokens above stand for:

"ift == IF

"t hen" => THEN

"while" => WH LE

"do" => DO

"until" => UNTIL

"read" => READ

"el se" => ELSE

"begi n"" => BEA N

"end" => END

"print" => PRINT

{al pha}[{digit}{al pha}]* => ID (identifier)
{digit}+ => NUM (positive integer)

"4 => ADD
"-" => SUB
"nen :> WL

"I" => DV

AS1. SPECS
"(" => LPAR
")" => RPAR
";"=> SEM COLON

M ni scul us conments:
M nuscul us has two types of coments:

* multi-line conments: /* coment */
* and one |ine comments: % comment
EXAMPLES:

M nsi cul us program
Here is an exanple program

/* This program cal cul ates the factorial of the nunmber input */
begin % i nput a nunber

read x;

yi= 1;
while x do
begi n

y:
X

I
<
*

Code generati on:
Typi cal m nuscul us progranms fragnents are:

begi n
y: = 23;
x: 13 + v;
print x;
end
begi n
if y then x:= 10
el se x:= 1;
z:=2z * X
end

(where we assune here that the variables x, y, and z nust have been
initialized earlier: Note that for conditionals and while statenents zero
is false anything else is true). These fragnents are translated into a
stack nachi ne code:

cPUSH 23
LOAD y
cPUSH 13
r PUSH y
oP2 +
LOAD x

r PUSH x

Page 2 of 3

AS1. SPECS Page 3 of 3

PRI NT
r PUSH vy
cJuw L1
cPUSH 10
LOAD x
JUW L2
L1:
cPUSH 1
LOAD x
L2:
r PUSH z
r PUSH x
oP2 *
LOAD z
wher e
* cPUSH k --- push constant k onto stack
* rPUSH r --- push contents of register r onto stack
* SPUSH --- replaces the top elenent of the stack by the elenent it
i ndexes in the stack
LOAD r --- pop the top of the stack and put the value in register r
* OPn?? --- performthe operation on the top n values of the stack
replacing them by the result
* ¢JUWP L --- conditional goto L (a |label) pops top of stack and if it
is zero (false) it junps to | abe
* JUW L --- unconditional junp to |abe
* PRINT --- pops and prints the top el ement of the stack
READ r --- reads a value into register r (actually it reads a line
and uses the first value on the line ...)
Here is an inplenentation of this stack machine in the shell: source

this then source the file your M nuscul us conpiler produces!

... aliases for Robin' s stack nmachi ne.
This file should be "sourced" prior to executing
stack machine files.

set stack = ""

alias cPUSH "set stack = (\!:1 $stack)’

alias rPUSH "set stack = ($\!:1 $stack)

ali as sPUSH "@stack[1] = $stack[1l] + 1 ; set stack[1l] =
$st ack[$stack[1]]’

alias LOAD "eval "set \!:1 = \$stack[1l] ; shift stack"’
alias OP2 "eval "@stack[2] = \$stack[2] \!:1
\$stack[1]"; shift stack’

alias cJUWP "set tos = $stack[1l]; shift stack; if ($tos ==
0) goto \!: 1’

alias JUW got o

alias PRINT "echo $stack[1]; shift stack

al i as READ "eval "set \!:1 = $< "’

