
__README__.txt Page 1 of 2

CPSC 411 ASSIGNMENT # 1
Winter 2001
Lec ??
Lab 02

Student: Chad C. D. Clark < clarkch @ cpsc . ucalgary . ca >
Date: Jan 28, 2002

Synopsis: A minusculus compiler written in pure C that generates stack
 machine code as defined in file AS1.SPECS.

NOTE: I did use the _OLD_ grammar. Though the rules do get manipulated a
 bit. Refer to source code comments for term, expr and, stmtlist.

Input: Reads minusculus source code from STDIN.
Output: Writes stack machine target code to STDOUT.
 Errors (including warnings) are reported to STDERR.

Files:
 README - contains info about this project and tarball.
 AS1.SPECS - copy of the assignment in text format.
 AS1.GRAMMAR - new grammar (non left-recursive).
 as1lex.l - the lexer and main() routine.
 as1parse.c - performs the parsing and syntax tree construction.
 as1tree.c - function that deal with building the tree and traversing.
 as1globals.h - info used by more than one file.
 as1tokens.h - defines the token types used by the lexer and parser.
 as1tree.h - defines node types and tree functions.
 makefile - pretty standard makefile.
 tests/ - directory with many test files.
 tests/do-tests - script to run the tests found in tests directory.

Compiling:
 Just use the command "make".
 "make clean" deletes lex.yy.c, *.o and a.out
 "make stats" counts source file lines.

 Requires flex and gcc
 - Developed with:
 - flex 2.5.4
 - egcs 2.91.66
 - gdb 4.18

Postmortum: (Mostly for my benifit but I wanted to keep this next to the code.)

 Things that went well:
 - Writing the tree pointer code. Only one null pointer error!
 It was due to not checking for NULL and not having an END_NODE.
 - Writing the lexer. LEX rocks!

 Things that went not so well:
 - Getting the shape of the tree stucture down in my mind. I was
 starting to get two disjoint models (parse code and node building
 code) then I sat down, drew pictures and, traced out tree traversals
 untill I had a model. Then writing down a record of the model for
 reference.
 - Realizing C unlike C++ requires ’struct’ before every declaration.

 Things that were usefull:
 - Drawing pictures (trees in particular).
 - Writing down plans, decisions and models for reference in other
 parts of the program.
 - Writing code on paper before typing it up.
 - GDB and the GDB book by Stallman and Pesch.

__README__.txt Page 2 of 2

 - syntax highlighting & 60 row console mode

 Things I would like to do differently on future projects:
 - Sit down and plan out the structure of the program before writing
 code.
 - Document my data structures before using them. It’s easier than
 searching with grep and opening up an editor.

 Things I learned:
 - A nice (ie non left recursive grammar) is very usefull.
 - Follow sets can make parsing much easier.

 Things I want to learn:
 - How to let flex let me define main() outside of the .l file.

